Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T00:52:30.157Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 June 2012

William F. Hosford
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

The term “mechanical behavior” encompasses the response of materials to external forces. This text considers a wide range of topics. These include mechanical testing to determine material properties, plasticity for FEM analyses of automobile crashes, means of altering mechanical properties, and treatment of several modes of failure.

The two principal responses of materials to external forces are deformation and fracture. The deformation may be elastic, viscoelastic (time-dependent elastic deformation), plastic, or creep (time-dependent plastic deformation). Fracture may occur suddenly or after repeated application of loads (fatigue). For some materials, failure is time-dependent. Both deformation and fracture are sensitive to defects, temperature, and rate of loading.

The key to understanding these phenomena is a basic knowledge of the three-dimensional nature of stress and strain and common boundary conditions, which are covered in the first chapter. Chapter 2 covers elasticity, including thermal expansion. Chapters 3 and 4 treat mechanical testing. Chapter 5 is focused on mathematical approximations to stress–strain behavior of metals and how these approximations can be used to understand the effect of defects on strain distribution in the presence of defects. Yield criteria and flow rules are covered in Chapter 6. Their interplay is emphasized in problem solving. Chapter 7 treats temperature and strain-rate effects and uses an Arrhenius approach to relate them. Defect analysis is used to understand superplasticity as well as strain distribution.

Chapter 8 is devoted to the role of slip as a deformation mechanism. The tensor nature of stresses and strains is used to generalize Schmid's law.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Mechanical Behavior of Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810930.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Mechanical Behavior of Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810930.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Mechanical Behavior of Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810930.001
Available formats
×