Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T10:43:22.948Z Has data issue: false hasContentIssue false

13 - Glasses

Published online by Cambridge University Press:  05 June 2012

William F. Hosford
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Glasses are amorphous so they have no long-range order and no symmetry. There is, however, a great deal of short-range order. If crystallization is prevented during cooling, an amorphous glass will form with short-range order inherited from the liquid. The critical cooling rate to prevent crystallization varies greatly from one material to another. Silicate glasses cannot crystallize unless the cooling rates are extremely slow. On the other hand, extremely rapid cooling is required to prevent crystallization of metals.

Structure of Silicate Glasses

The basic structural units of silicate glasses are tetrahedra with Si4+ ions in the center bonded covalently to O2− ions at each corner. In pure silica all corner oxygen ions are shared by two tetrahedra (Figure 13.1). The result is a covalently bonded glass with a very high viscosity at elevated temperatures.

The compositions of typical commercial glasses are quite complex. Soda-lime glasses may contain 72% SiO2, 14% Na2O, 11% CaO, and 3% MgO. The Na+, Ca2+, and Mg2+ ions are bonded ionically to some of the corner O2− ions (Figure 13.2). With these alkali and alkaline earth oxides, not all of the oxygen ions are covalently bonded to two tetrahedra. This lowers the viscosity at high temperatures.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Glasses
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Materials for Engineers
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810732.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Glasses
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Materials for Engineers
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810732.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Glasses
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Materials for Engineers
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810732.014
Available formats
×