Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-03T08:16:45.062Z Has data issue: false hasContentIssue false

6 - Metals and other inorganic chemicals

Published online by Cambridge University Press:  05 June 2012

David A. Wright
Affiliation:
University of Maryland, College Park
Pamela Welbourn
Affiliation:
Queen's University, Ontario
Get access

Summary

Introduction

Inorganic contaminants include metals, metalloids, and a number of relatively simple molecules such as phosphate and ammonia. The ways in which inorganic substances can become problematic in the environment, and thus be considered as contaminants, are frequently as a result of their being mobilised or modified chemically by human activities. In contrast to organic contaminants (Chapter 7), many of which are xenobiotic, many inorganic contaminants occur naturally; ecosystems do not distinguish between natural and anthropogenic substances. In terms of their regulation, as well as their management, inorganic contaminants are expected to differ in many respects from xenobiotic substances.

Another point of contrast between inorganic and organic contaminants is that a number of inorganic substances not only are potentially toxic but also are required as nutrients. Such substances exemplify the oft-quoted statement that the dose defines the poison (Paracelsus, c 1493–1541, cited in Rodricks, 1993).

In the context of dose-response, those substances that are nutrients as well as potential toxicants can be put into a simple model, as shown in Figure 6.1, which invokes the concepts of deficiency, sufficiency, and toxicity, successively. For an element such as copper, this succession is theoretically a relatively simple series of transitions. The dose of copper is shown as supply, on the x-axis, and the response as growth rate is shown on the y-axis. Very low doses of copper can result in nutrient deficiency, with below optimum growth; as the supply increases, up to a certain point, there is a positive response. This is the range over which copper is required as a micronutrient.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×