Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-05T05:46:55.657Z Has data issue: false hasContentIssue false

26 - Modeling of atmospheric flow by spectral techniques

Published online by Cambridge University Press:  05 June 2012

Wilford Zdunkowski
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Andreas Bott
Affiliation:
Rheinische Friedrich-Wilhelms-Universität Bonn
Get access

Summary

Introduction

The representation of atmospheric flow fields by means of spherical functions has a long history. Haurwitz (1940) represented the movement of Rossby waves by means of spherical functions. The development of the spectral method for the numerical integration of the equations of atmospheric motion goes back to Silberman (1954), who integrated the barotropic vorticity equation in spherical geometry. The spectral method attracted the attention of others and studies were performed, for example, by Lorenz (1960), Platzman (1960), Kubota et al. (1961), Baer and Platzman (1961), and Elsaesser (1966). Lorenz demonstrated that, for nondivergent barotropic flow, the truncated spectral equations have some important properties. Just like the exact differential equations, they preserve the mean squared vorticity, called enstrophy, and the mean kinetic energy. Platzman pointed out that this very desirable property automatically eliminated nonlinear instability, which at that time was a substantial difficulty in grid-point models. The early work made use of the so-called interaction coefficients to handle nonlinearity. This cumbersome procedure was replaced by the efficient transform technique for solving the spectral equations, which was devised independently by Orszag (1970) and by Eliasen et al. (1970). In compressed form the essential information on spectral modeling is given by Haltiner and Williams (1980). Much valuable information about spectral techniques – which is usually not readily available – can be extracted from the “gray” literature. We refer to an excellent report by Eliasen et al. (1970). Finally, we refer the reader to an excellent article on “Global modelling of atmospheric flow by spectral methods”, by Bourke et al. (1977).

Type
Chapter
Information
Dynamics of the Atmosphere
A Course in Theoretical Meteorology
, pp. 649 - 668
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×