Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-16T10:58:49.109Z Has data issue: false hasContentIssue false

7 - Coupled biochemical systems and membrane transport

Published online by Cambridge University Press:  05 June 2012

Daniel A. Beard
Affiliation:
Medical College of Wisconsin
Hong Qian
Affiliation:
University of Washington
Get access

Summary

Overview

As we have seen in previous chapters, living systems require that material be transported in and out in order to maintain an operating state (or operating states) that is far from thermodynamic equilibrium. Material is transported into and out of cells via passive permeation and by a diverse set of channels, pumps, transporters, and exchangers. In this chapter we consider kinetic models of transport across membranes, with specific examples of coupled transport and reaction in metabolic and electrophysiological systems. In the final example a computational model of oxidative ATP synthesis (which occurs as a set of reactions transporting charged species across the mitochondrial inner membrane) is developed. This model may be integrated with the detailed kinetic model of the TCA cycle presented in Chapter 6, allowing us to simulate and explore how the coupled systems interact – the TCA cycle producing reduced cofactors and the oxidative phosphorylation systems transducing the free energy of oxidation of these cofactors to synthesize and transport ATP.

Transporters

In Section 3.2 we introduced the basic processes of advection, diffusion, and drift, by which material is transported in biophysical systems. In this chapter we focus on a specialized class of transport: transport across biological membranes. Transport of a substance across a membrane may be driven by passive permeation, as described by Equation (3.60), or it may be facilitated by a carrier protein or transporter that is embedded in the membrane.

Type
Chapter
Information
Chemical Biophysics
Quantitative Analysis of Cellular Systems
, pp. 162 - 192
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×