Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-10T22:12:28.181Z Has data issue: false hasContentIssue false

7 - Magnetic instability in a static atmosphere

Published online by Cambridge University Press:  05 June 2012

James E. Pringle
Affiliation:
University of Cambridge
Andrew King
Affiliation:
University of Leicester
Get access

Summary

In Chapter 4 we considered the stability of a static fluid configuration against convective instabilities, or buoyancy. We found that for stability the specific entropy must increase upwards. In this chapter we again consider the stability of a static atmosphere, but with the complication of an added magnetic field. We shall find that the magnetic field can act either to stabilize or to de-stabilize the fluid. It is possible to derive a variational principle for perturbations of a fluid containing a magnetic field, just as we did for a non-magnetic fluid in Chapter 4 (see Problem 4.7.4). Of course, the expressions we would derive in doing so contain all the information required to decide stability. But we found in Chapter 4 that we had to manipulate carefully the expressions we derived in the variational principle to extract a useful stability criterion – the Schwarzschild criterion. Adding a magnetic field makes the expressions in the variational principle much more complex, simply because the geometry of the magnetic field and its interaction with the fluid add more degrees of freedom, and there is no simple stability criterion. Accordingly we adopt a simpler, less comprehensive, approach here.

There are some guiding concepts with which a theoretical astrophysicist should be familiar, and we illustrate these here. We discuss the two distinct, but often confused, modes of instability – the buoyancy instability and the Parker instability. As before we keep try to keep the situation simple, in order to bring out the physics of the situation without obscuring it in mathematical detail.

Type
Chapter
Information
Astrophysical Flows , pp. 102 - 112
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×