Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T16:45:57.533Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2015

Enrico Gnecco
Affiliation:
Instituto Madrileño de Estudios Avanzados, Madrid
Ernst Meyer
Affiliation:
Universität Basel, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abdurixit, A., Baratoff, A. and Meyer, E. 2000. Molecular dynamics simulations of dynamic force microscopy: applications to the Si(111)7x7 surface.Appl. Surf. Sci., 157, 355.Google Scholar
[2] Airy, G. B. 1862. On the strains in the interior of beams.Phil. Trans. Roy. Soc. London, 153, 49.Google Scholar
[3] Albrecht, T. R., Griitter, P., Horne, D. and Rugar, D. 1991. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity.J. Appl. Phys., 69, 668.Google Scholar
[4] Alireza Ghasemi, S., Goedecker, S., Baratoff, A., Lenosky, T., Meyer, E. and Hug, H. J. 2008. Ubiquitous mechanisms of energy dissipation in noncontact atomic force microscopy.Phys. Rev. Lett., 100, 236106.Google Scholar
[5] Amontons, G. 1699. On the resistance caused in machines (in French).Mem. R. Acad., Paris, 257.Google Scholar
[6] Archard, J. F. 1957. Elastic deformation and the laws of friction.Proc. Roy. Soc. A, 243, 190.Google Scholar
[7] Archard, J. F. 1959. The temperature of rubbing surfaces.Wear, 2, 438.Google Scholar
[8] Aruliah, D. A., Muser, M. and Schwarz, U. D. 2005. Calculations of the threshold force and threshold power to move adsorbed nanoparticles.Phys. Rev. B, 71, 085406.Google Scholar
[9] Ashegi, M., Leung, Y. K., Wong, S. S. and Goodson, K. E. 1997. Phonon-boundary scattering in thin silicon layers.Appl. Phys. Lett., 71 1798.Google Scholar
[10] Barabasi, A. L. and Stanley, H. E. 1995. Fractal Concepts in Surface Growth. Cambridge University Press.
[11] Barel, I., Urbakh, M., Jansen, L. and Schirmeisen, A. 2010. Multibond dynamics of nanoscale friction: the role of temperature.Phys. Rev. Lett., 104, 066104.Google Scholar
[12] Bartels, L., Meyer, G. and Rieder, K. H. 1997. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip.Phys. Rev. Lett., 79, 697.Google Scholar
[13] Barus, C. 1893. Isotherms, isopiestics and isometrics relative to viscosity.Am. J. Sci., 45, 87.Google Scholar
[14] Baumberger, T., Heslot, F. and Perrin, B. 1994. Crossover from creep to inertial motion in friction dynamics.Nature, 367, 544.Google Scholar
[15] Bauschinger, J. 1881. On the the variation of yield strength and modulus of elasticity of different metals (in German).Zivilingenieur, 299, 289.Google Scholar
[16] Becker, T. and Mugele, F. 2003. Collapse of molecularly thin lubricant layers between elastic substrates.J. Phys.: Condens. Matter, 15, S321.Google Scholar
[17] Belak, J. and Stowers, I. F. 1990. A molecular dynamics model of the orthogonal cutting process.Proc. Am. Soc. Precision Eng., 76.Google Scholar
[18] Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E. and Guntherodt, H. J. 1999. Atomic stick-slip processes on Cu(111).Phys.Rev.B, 60, R11301.Google Scholar
[19] Bentall, R. H. and Johnson, K. R. 1967. Slip in the rolling contact of two dissimilar elastic rollers.Int. J. Mech. Sci., 9, 389.Google Scholar
[20] Benz, M., Rosenberg, K. J., Kramer, E. J. and Israelachvili, J. N. 2006. The defor-mation and adhesion of randomly rough and patterned surfaces.J. Phys. Chem. B, 110, 11884.Google Scholar
[21] Berkovich, E. S. 1950. Three-faceted diamond pyramid for studying mechanical microhardness by indentation (in Russian).Zavodskaya Laboratoria, 13, 345.Google Scholar
[22] Berry, M. V. and Lewis, Z. V. 1980. On the Weierstrass-Mandelbrot fractal function.Proc. R. Soc. A., 370, 459.Google Scholar
[23] Binnig, G., Rohrer, H., Gerber, C. and Weibel, E. 1982. Surface studies by scanning tunneling microscopy.Phys. Rev. Lett., 49, 57.Google Scholar
[24] Binnig, G., Quate, C. F. and Gerber, C. 1986. Atomic force microscope.Phys. Rev. Lett., 56, 930.Google Scholar
[25] Blasius, H. 1908. Boundary layers in fluids with low friction (in German).Z. Math. Phys., 56, 1.Google Scholar
[26] Bocquet, L., Charlaix, E., Ciliberto, S. and Crassous, J. 1998. Moisture-induced ageing in granular media and the kinetics of capillary condensation.Nature, 396, 735.Google Scholar
[27] Bohlein, T., Mikhael, J. and Bechinger, C. 2012. Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces.Nature Materials, 11, 126.Google Scholar
[28] Bouchbinder, E., Goldman, T. and Fineberg, J. 2014. The dynamics of rapid fracture: instabilities, nonlinearities and length scales.Rep. Prog. Phys., 77, 046501.Google Scholar
[29] Bouhacina, T., Aimé, J. P., Gauthier, S., Michel, D. and Heroguez, V. 1997. Tri-bological behaviour of a polymer grafted in silanized silica probed with a nanotip.Phys. Rev. B, 56, 7694.Google Scholar
[30] Boussinesq, J. V. 1885. Applications of potentials to the study of equilibrium and motion ofelastic solids (in French). Gauthier-Villars.
[31] Bowden, F. P. 1953. Friction on snow and ice.Proc. Roy. Soc. London A, 217, 462.Google Scholar
[32] Bowden, F. P. and Tabor, D. 1986. Friction and Lubrication. Clarendon Press.
[33] Brace, W. F. and Byerlee, J. D. 1966. Stick slip as a mechanism for earthquakes.Science, 153, 990.Google Scholar
[34] Bradley, R. S. 1932. The cohesive force between solid surfaces and the surface energy of solids.Phil. Mag., 13, 853.Google Scholar
[35] Braun, O. M. and Kivshar, Y. S. 2004. The Frenkel-Kontorova Model: Concepts, Methods, and Applications. Springer.
[36] Braun, O. M. and Naumovets, A. G. 2006. Nanotribology: microscopic mechanisms of friction.Surf. Sci. Rep., 60, 79.Google Scholar
[37] Bufler, H. 1959. On the theory of rolling friction (in German).Ing. Arch., 27, 137.Google Scholar
[38] Buldum, A., Ciraci, S., and Batra, I. P. 1998. Contact, nanoindentation, and sliding friction.Phys. Rev. B, 57, 2468.Google Scholar
[39] Burridge, R. and Knopoff, L. 1967. Model and theoretical seismicity.Bull. Seismol. Sec. Am., 57, 341.Google Scholar
[40] Bush, A. W., Gibson, R. D., and Thomas, T. R. 1975. The elastic contact of a rough surface.Wear, 35, 87.Google Scholar
[41] Butt, H. J. and Jaschke, M. 1995. Calculation of thermal noise in atomic-force microscopy.Nanotechnology, 6, 1.Google Scholar
[42] Cannara, R. J., Brukman, M. J., Cimatu, K., Sumant, A., Baldelli, S., and Carpick, R. 2007. Nanoscale friction varied by isotopic shifting of surface vibrational frequencies.Science, 318, 780.Google Scholar
[43] Car, R. and Parrinello, M. 1985. Unified approach for molecular dynamics and density-functional theory.Phys. Rev. Lett., 55, 2471.Google Scholar
[44] Carlson, J. M. and Batista, A. A. 1996. Constitutive relation for the friction between lubricated surfaces.Phys.Rev.E, 53, 4153.Google Scholar
[45] Carlson, J. M. and Langer, J. S. 1989. Properties of earthquakes generated by fault dynamics.Phys. Rev. Lett., 62, 2632.Google Scholar
[46] Carpick, R. W., Agrait, N., Ogletree, D. F., and Salmeron, M. 1996. Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope.J. Vac. Sci. Technol. B, 14, 1289.Google Scholar
[47] Carpick, R. W., Ogletree, D. F. and M., Salmeron. 1999. A general equation for fitting contact area and friction vs load measurements.J. Coll. Int. Sci., 211, 395.Google Scholar
[48] Carter, F. W. 1926. On the action of a locomotive driving wheel.Proc. Roy. Soc. A, 112, 151.Google Scholar
[49] Cattaneo, C. 1938. On the contact of two elastic bodies: local distribution of stresses (in Italian).Rend. R. Acc. Naz. dei Lincei, 27, 342, 434, 474.Google Scholar
[50] Cerruti, V. 1882. Memoirs of Mathematical Physics (in Italian). Acc. Lincei.
[51] Chapman, S. 1916. On the law of distribution of molecular velocities, and on the theory of viscosity, in a non-uniform single monatomic gas.Phil. Trans. Roy. Soc. A, 216, 279.Google Scholar
[52] Chen, J., Ratera, I., Park, J. Y. and Salmeron, M. 2006. Velocity dependence of friction and hydrogen bonding effects.Phys. Rev. Lett., 96, 236102.Google Scholar
[53] Chen, L. B., Zukoski, C. F., Ackerson, B. J. et al. 1992. Structural changes and orientational order in a sheared colloidal suspension.Phys. Rev. Lett., 69, 688.Google Scholar
[54] Childs, T. H. C. 1973. The persistence of asperities in indentation experiments.Wear, 25, 3.Google Scholar
[55] Choi, J. S., Kim, J. S., Byun, I. S.et al. 2011. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene.Science, 333, 607.Google Scholar
[56] Chumak, A. A., Milonni, P. W. and Berman, G. P. 2004. Effects of electrostatic fields and Casimir force on cantilever vibrations.Phys. Rev. B, 70, 085407.Google Scholar
[57] Ciavarella, M. and Decuzzi, P. 2001. The state of stress induced by the plane fric-tionless cylindrical contact. II. The general case (elastic dissimilarity).Int. J. Sol. Struc., 38, 4525.Google Scholar
[58] Cleveland, J. P., Anczykowski, B. and Elings, V. B. 1991. Energy dissipation in tapping-mode atomic force microscopy.Appl. Phys. Lett., 59, 2171.Google Scholar
[59] Cleveland, J. P., Manne, S., Bocek, D. and Hansma, P. K. 1993. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy.Rev. Sci. Instrum., 64, 403.Google Scholar
[60] Colebrook, C. F. 1939. Turbulent flow in pipes, with particular reference to the transition regime between smooth and rough pipe laws.J. Inst. Civ. Eng. London, 11, 133.Google Scholar
[61] Cumings, J. and Zettl, A. 2000. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes.Science, 289, 602.Google Scholar
[62] Das, B. M. 2006. Principles of Geotechnical Engineering. Thompson.
[63] Daw, M. S. and Baskes, M. I. 1984. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals.Phys. Rev. B, 29, 6443.Google Scholar
[64] Dayo, A., Alnasrallah, W. and Krim, J. 1998. Superconductivity-dependent sliding friction.Phys. Rev. Lett., 80, 1690.Google Scholar
[65] de Gennes, P. G. 1985. Wetting: statics and dynamics.Rev. Mod. Phys., 57, 827.Google Scholar
[66] Deacon, R. F. and Goodman, J. F. 1958. Lubrication by lamellar solids.Proc. Roy. Soc. London A, 243, 464.Google Scholar
[67] Del Rio, F. W., Dunn, M. L., Phinney, L. M., Bourdon, C. J. and de Boer, M. P. 2007. Rough surface adhesion in the presence of capillary condensation.Appl. Phys. Lett., 90, 163104.Google Scholar
[68] Denk, W. and Pohl, D. 1991. Local electrical dissipation imaged by scanning force microscopy.Appl. Phys. Lett., 59, 2171.Google Scholar
[69] Deresiewicz, H. 1954. Contact of elastic spheres under an oscillating torsional couple.Trans. ASME, J. App. Mech., 21, 52.Google Scholar
[70] Deresiewicz, H. 1968. A note on Hertz impact.Acta Mech., 6, 110.Google Scholar
[71] Derjaguin, B. V., Muller, V. M. and Toporov, Y. P. 1975. Effect of contact deformations on the adhesion of particles.J. Colloid Interface Sci., 53, 314.Google Scholar
[72] Dienwiebel, M., Verhoeven, G. S., Pradeep, N., Frenken, J. W. M., Heimberg, J. A. and Zandbergen, H. W. 2004. Superlubricity of graphite.Phys. Rev. Lett., 92, 126101.Google Scholar
[73] Dieterich, J. H. 1979. Modelling of rock friction: 1. Experimental results and constitutive equations.J. Geophys. Res., 84, 2161.Google Scholar
[74] Dieterich, J. H. and Kilgore, B. D. 1994. Direct observation of frictional contacts: new insights for state-dependent properties.Pure Appl. Geoph., 143, 283.Google Scholar
[75] Dietzel, D., Feldmann, M., Fuchs, H., Schwarz, U. D. and Schirmeisen, A. 2009. Transition from static friction to kinetic friction of metallic nanoparticles.App. Phys. Lett., 95, 053104.Google Scholar
[76] Dong, Y., Li, Q. and Martini, A. 2013. Molecular dynamics simulation of atomic friction: a review and guide.J. Vac. Sci. Technol. A, 31, 030801.Google Scholar
[77] Doolittle, A. K. 1951. Studies in newtonian flow II, The dependence of the viscosity of liquids on free-space.J. Appl. Phys., 22, 1471.Google Scholar
[78] Dorofeyef, I., Fuchs, H., Wenning, G. and Gotsmann, B. 1999. Brownian motion of microscopic solids under the action of fluctuating electromagnetic fields.Phys. Rev. Lett., 83, 2404.Google Scholar
[79] Drucker, D. C. and Prager, W. 1952. Soil mechanics and plasticity analysis of limit design.Q. Appl. Math., 10, 157.Google Scholar
[80] Dürig, U. 1999. Conservative and dissipative interactions in dynamic force microscopy.Surf. Interface Anal., 27, 467.Google Scholar
[81] Dürig, U. 2000. Extracting interaction forces and complementary observables in dynamic probe microscopy.Appl. Phys. Lett., 76, 1203.Google Scholar
[82] Eason, G. and Shield, R. T. 1960. The plastic indentation of a semi-infinite solid by a perfectly rough punch.ZAMP, 11, 33.Google Scholar
[83] Einstein, A. 1906. A new determination of molecular dimensions (in German).Annalen der Phys., 19, 289.Google Scholar
[84] Einzel, D., Panzer, P. and Liu, M. 1990. Boundary condition for fluid flow: curved or rough surfaces.Phys. Rev. Lett., 64, 2269.Google Scholar
[85] Elkaakour, Z., Aime, J. P., Bouhacina, T., Odin, C. and Masuda, T. 1994. Bundle formation of polymers with an atomic force microscope in contact mode: a friction versus peeling process.Phys. Rev. Lett., 73, 3231.Google Scholar
[86] Enskog, D. 1917. The kinetic theory of phenomena in fairly rare gases (in German). PhD Thesis, University of Uppsala.
[87] Erlandsson, R., Olsson, L. and Martensson, P. 1996. Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7x7.Phys. Rev. B, 54, R8309.Google Scholar
[88] Fajardo, O. Y., Gnecco, E. and Mazo, J. J. 2014. Out-of-plane and in-plane actuation effects on atomic-scale friction.Phys.Rev.B, 89, 075423.Google Scholar
[89] Falvo, M. R., Taylor, R. M., Helser, A. et al. 1999. Nanometre-scale rolling and sliding of carbon nanotubes.Nature, 397, 236.Google Scholar
[90] Filippov, A., Dienwiebel, M., Frenken, J. W. M., Klafter, J. and Urbakh, M. 2008. Torque and twist against superlubricity.Phys. Rev. Lett., 100, 046102.Google Scholar
[91] Filippov, A. E., Popov, V. L. and Urbakh, M. 2011. Mechanism of wear and ripple formation induced by the mechanical action of an atomic force microscope tip.Phys. Rev. Lett., 106, 025502.Google Scholar
[92] Filleter, T. and Bennewitz, R. 2010. Structural and frictional properties of graphene lms on SiC(0001) studied by atomic force microscopy.Phys. Rev. B, 81, 155412.Google Scholar
[93] Flamant, A. 1892. On the pressure distribution in a rectangular solid transversely loaded (in French).Comptes Rendus Acad. Sci. Paris, 114, 1465.Google Scholar
[94] Frank, F. C. and Read, W. T. Jr. 1950. Multiplication processes for slow moving dislocations.Phys. Rev., 79, 722.Google Scholar
[95] Frenkel, Y. I. and T. Kontorova. 1938. On the theory of plastic deformation and doubling (in Russian).Zh. Eksp. Teor. Fiz., 8, 1340.Google Scholar
[96] Freund, L. B. 1998. Dynamic Fracture Mechanics. Cambridge University Press.
[97] Fusco, C. and Fasolino, A. 2005. Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional Tomlinson model.Phys. Rev. B, 71, 045413.Google Scholar
[98] Gao, J. P., Luedtke, W. D., Gourdon, D., Ruths, M., Israelachvili, J. N. and Landman, U. 2004. Frictional forces and Amontons law: from the molecular to the macroscopic scale.J. Phys. Chem. B, 108, 3410.Google Scholar
[99] Gauthier, M. and Tsukada, M. 1999. Theory of noncontact dissipation force microscopy.Phys. Rev. B., 60, 11716.Google Scholar
[100] Gauthier, M. and Tsukada, M. 2000. Damping mechanism in dynamic force microscopy.Phys. Rev. Lett., 85, 5348.Google Scholar
[101] Gee, M. L., McGuiggan, P. M. and Israelachvili, J. N. 1990. Liquid to solidlike transitions of molecularly thin films under shear.J. Chem. Phys., 93, 1895.Google Scholar
[102] Giessibl, F. 1997. Forces and frequency shifts in atomic-resolution dynamic-force microscopy.Phys. Rev. B., 56, 16010.Google Scholar
[103] Gladwell, G. M. L. 1976. On some unbounded contact problems in plane elasticity theory.Trans. ASME, Series E, J. App. Mech., 43, 263.Google Scholar
[104] Glasston, S., Laidler, K. J. and Eyring, H. 1941. The Theory of Rate Processes. McGraw Hill.
[105] Gnecco, E. 2010a. A collisional model for AFM manipulation of rigid nanoparticles.Beilstein J. Nanotechnol., 1, 158.Google Scholar
[106] Gnecco, E. 2010b. Quasi-isotropy of static friction on hexagonal surface lattices.Europhys. Lett., 91, 66008.Google Scholar
[107] Gnecco, E., Bennewitz, R., Gyalog, T. et al. 2000. Velocity dependence of atomic friction.Phys. Rev. Lett., 84, 1172.Google Scholar
[108] Gnecco, E., Bennewitz, R. and Meyer, E. 2002. Abrasive wear on the atomic scale.Phys. Rev. Lett., 88, 215501.Google Scholar
[109] Gnecco, E., Socoliuc, A., Maier, S.et al. 2009a. Dynamic superlubricity on insulating and conductive surfaces in ultra-high vacuum and ambient environment.Nanotechnology, 20, 025501.Google Scholar
[110] Gnecco, E., Riedo, E., King, W. P., Marder, S. R. and Szoszkiewicz, R. 2009b. Linear ripples and traveling circular ripples produced on polymers by thermal AFM probes.Phys. Rev. B, 79, 235421.Google Scholar
[111] Gnecco, E., Rao, A., Mougin, K., Chandrasekar, G. and Meyer, E. 2010. Controlled manipulation of rigid nanorods by atomic force microscopy.Nanotechnology, 21, 215702.Google Scholar
[112] Gnecco, E., Roth, R. and Baratoff, A. 2012. Analytical expressions for the kinetic friction in the Prandtl-Tomlinson model.Phys. Rev. B, 86, 035443.Google Scholar
[113] Goldman, T., Livne, A. and Fineberg, J. 2010. Acquisition of inertia by a moving crack.Phys. Rev. Lett., 104, 114301.Google Scholar
[114] Goldstein, H., Poole, C. P. Jr. and Safko, J. L. 2001. Mechanics. Third edn. Pearson International Editions.
[115] Goodman, L. E. 1962. Contact stress analysis of normally loaded rough spheres.Trans. ASME, Series E, J. App. Mech., 29, 515.Google Scholar
[116] Goodman, L. E. and Keer, L. M. 1965. The contact stress problem for an elastic sphere indenting an elastic cavity.Int. J. Sol. Struc., 1, 407.Google Scholar
[117] Goryl, M., Budzioch, J., Krok, F. et al. 2012. Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors.Phys.Rev.B, 85, 085308.Google Scholar
[118] Gotsmann, B. and Durig, U. 2004. Thermally activated nanowear modes of a polymer surface induced by a heated tip.Langmuir, 20, 1495.Google Scholar
[119] Gotsmann, B. and Fuchs, H. 2001. Dynamic force spectroscopy of conservative and dissipative forces in Al-Au(111) tip-sample system.Phys. Rev. Lett., 86, 2597.Google Scholar
[120] Gotsmann, B., Seidel, B., Anczykowski, B. and Fuchs, H. 1999. Conservative and dissipative tip-sample interaction forces probed with dynamic AFM.Phys. Rev. B, 60, 11051.Google Scholar
[121] Green, C. P., Lioe, H., Cleveland, J. P., Proksch, R., Mulvaney, P. and Sader, J. E. 2004. Normal and torsional spring constants of atomic force microscope cantilevers.Rev. Sci. Instr., 75, 1988.Google Scholar
[122] Greenwood, J. A. and Williamson, J. B. 1966. Contact of nominally flat surfaces.Proc. Roy. Soc. A, 295, 300.Google Scholar
[123] Griffith, A. A. 1921. The phenomena of rupture and flow in solids.Phil. Trans. Roy. Soc. A, 221, 163.Google Scholar
[124] Guggisberg, M., Bammerlin, M., Loppacher, C. et al. 2000. Separation of interactions by noncontact force microscopy.Phys.Rev.B, 61, 11151.Google Scholar
[125] Gürgöze, M. 2005. On the representation of a cantilevered beam carrying a tip mass by an equivalent springmass system.J. Sound Vib., 202, 538.Google Scholar
[126] Gutenberg, B. and Richter, C. F. 1956. Magnitude and energy of earthquakes.Ann. Geofis., 9, 1.Google Scholar
[127] Gysin, U., Rast, S., Ruff, P., Lee, D. W., Vettiger, P. and Gerber, C. 2004. Temperature dependence of the force sensitivity of silicon cantilevers.Phys. Rev. B, 69, 045403.Google Scholar
[128] Hadamard, J. 1911. Permanent slow motion of a liquid viscous sphere in a viscous liquid (in French).Comptes Rendus, 152, 1735.Google Scholar
[129] Haddow, J. B. 1967. On a plane strain wedge indentation paradox.Int. J. Mech. Sci., 9, 159.Google Scholar
[130] Hamilton, G. M. 1983. Explicit equations for the stresses beneath a sliding spherical contact.Proc. Inst. Mech. Eng. C, 197, 53.Google Scholar
[131] Hamrock, B. J. and Dowson, D. 1981. Ball Bearing Lubrication, the Elastohydro-dynamics of Elliptical Contacts. John Willey & Sons.
[132] Hardy, C., Baronet, C. M. and Tordion, G. V. 1971. Elastoplastic indentation of a half-space by a rigid sphere.J. Num. Meth. Eng., 3, 451.Google Scholar
[133] Haucke, H., Liu, X., Vignola, J. F., Houston, B. H., Marcus, M. H. and Bald win, J. W. 2005. Effects of annealing and temperature on acoustic dissipation in a micromechanical silicon oscillator.Appl. Phys. Lett., 86, 181903.Google Scholar
[134] Heathcote, H. L. 1921. The ball bearing: in the making, under test and on service.Proc. Inst. Automobile Engineers, 15, 569.Google Scholar
[135] Hencky, H. 1923. On some statically determinate cases of equilibrium in plastic bodies (in German).Z. angew. Math. Mech., 3, 241.Google Scholar
[136] Hertz, H. 1882. On the contact of elastic solids (in German).Z. reine angew. Math. Mech., 92, 156.Google Scholar
[137] Heslot, F., Cazabat, A. M. and Levinson, P. 1989. Dynamics of wetting of tiny drops: ellipsometric study of the late stages of spreading.Phys. Rev. Lett., 62, 1286.Google Scholar
[138] Hill, R. 1950. Mathematical Theory of Plasticity. Oxford University Press.
[139] Hill, R., Lee, E. H. and Tupper, S. J. 1947. Theory of wedge-indentation of ductile metals.Proc. R. Soc. A, 188, 273.Google Scholar
[140] Hirano, M., Shinjo, K., Kaneko, R. and Murata, Y. 1991. Anisotropy of frictional forces in muscovite mica.Phys. Rev. Lett., 67, 2642.Google Scholar
[141] Hirano, M., Shinjo, K., Kaneko, R. and Murata, Y. 1997. Observation of superlubricity by scanning tunneling microscopy.Phys. Rev. Lett., 78, 1448.Google Scholar
[142] Howald, L., Lüthi, R., Meyer, E. and Güntherodt, H.J. 1995. Atomic-force microscopy on the Si(111)7 x 7 surface.Phys.Rev.B, 51, 5484.Google Scholar
[143] Hutter, J. L. and Bechhoefer, J. 1993. Calibration of atomic- force microscope tips.Rev. Sci. Instrum., 64, 1868.Google Scholar
[144] Hyun, S., Pei, L., Molinari, J.-F. and Robbins, M. O. 2004. Finite-element analysis of contact between elastic self-affine surfaces.Phys. Rev. E, 70, 026117.Google Scholar
[145] Inglis, C.E. 1913. Stresses in a plate due to the presence of cracks and sharp corners.Proc. Inst. Naval. Arch., 55, 163.
[146] Irwin, G. 1957. Analysis of stresses and strains near the end of a crack traversing a plate.J. App. Mech., 24, 361.Google Scholar
[147] Ishikawa, M., Okita, S., Minami, N. and Miura, K. 2000. Load dependence of lateral force and energy dissipation at NaF(001) surface.Surf. Sci., 445, 488.Google Scholar
[148] Israelachvili, J. N. 1991. Intermolecular and Surface Forces. Academic Press.
[149] Israelachvili, J. N. 1992. Adhesion forces between surfaces in liquids and condensable vapours.Surf. Sci. Rep., 14, 109.Google Scholar
[150] Jacobs, T. D. B. and Carpick, R. 2013. Nanoscale wear as a stress-assisted chemical reaction.Nature Mat., 8, 108.Google Scholar
[151] Jansen, L., Hölscher, H., Fuchs, H. and Schirmeisen, A. 2010. Temperature dependence of atomic-scale stick-slip friction.Phys. Rev. Lett., 104, 256101.Google Scholar
[152] Jarvis, S. P., Uchihashi, T., Ishida, T., Tokumoto, H. and Nakayama, Y. 2000. Temperature dependence of atomic-scale stick-slip friction.J. Phys. Chem., 104, 6091.Google Scholar
[153] Johnson, K. L. 1955. Surface interaction between elastically loaded bodies under tangential forces.Proc. Roy. Soc. A, 230, 521.Google Scholar
[154] Johnson, K. L. 1961. Energy dissipation at spherical surfaces in contact transmitting oscillating forces.J. Mech. Eng. Sci., 3, 362.Google Scholar
[155] Johnson, K. L. 1968. Deformation of a plastic wedge by a rigid flat die under the action of a tangential force.J. Mech. Phys. Sol., 16, 395.Google Scholar
[156] Johnson, K. L. 1987. Contact Mechanics. Cambridge University Press.
[157] Johnson, K. L., Kendall, K. and Roberts, A. D. 1971. Surface energy and the contact of elastic solids.Proc. Roy. Soc. A, 324, 301.Google Scholar
[158] Johnson, K. L., Greenwood, J. A. and Higginson, J. G. 1985. The contact of elastic regular wavy surfaces.Int. J. Mech. Sci., 27, 383.Google Scholar
[159] Johnson, W., Mahtab, F. U. and Haddow, J. B. 1964. Indentation of a semi-infinite block by a wedge of comparable hardness.Int. J. Mech. Sci., 6, 329.Google Scholar
[160] Jost, H. P. 1966. Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Needs. Dept. of Education and Science, Her Majesty's Stationery Office.
[161] Kalker, J. J. 1967a. On the rolling contact of two elastic bodies in the presence of dry friction. PhD Thesis, Technical University Delft.
[162] Kalker, J. J. 1967b. A strip theory for rolling with slip and spin.Proc. Kon. Ned. Akad. van Wetenschappen., B70, 10.Google Scholar
[163] Kato, K. 1915. Mathematical investigation on the mechanical problems of transmission line (in Japanese).J. Jap. Soc. Mech. Eng., 19, 41.Google Scholar
[164] Kawai, S., Canova, F. F., Glatzel, T., Foster, A. S. and Meyer, E. 2011. Atomic-scale dissipation processes in dynamic force spectroscopy.Phys. Rev. B, 84, 115415.Google Scholar
[165] Kawai, S., Koch, M., Gnecco, E.et al. 2014. Quantifying the atomic-level mechanics of single long physisorbed molecular chains.PNAS, 111, 3968.Google Scholar
[166] Kisiel, M., Gnecco, E., Gysin, U., Marot, L., Rast, S. and Meyer, E. 2011. Suppression of electronic friction on Nb films in the superconducting state.Nat. Mat., 10, 119.Google Scholar
[167] Koch, S., Stradi, D., Gnecco, E. et al. 2013. Elastic response of graphene nanodomes.ACS Nano, 7, 2927.Google Scholar
[168] Kopta, S. and Salmeron, M. 2000. The atomic scale origin of wear on mica and its contribution to friction.J. Chem. Phys., 113, 8249.Google Scholar
[169] Kramers, H. A. 1940. Brownian motion in a field of force and the diffusion model of chemical reactions.Physica, 7, 284.Google Scholar
[170] Krim, J. and Widom, A. 1988. Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity.Phys.Rev.B, 38, 12184.Google Scholar
[171] Krylov, S. Y., Jinesh, K. B., Valk, H., Dienwiebel, M. and Frenken, J. W. M. 2005. Thermally induced suppression of friction at the atomic scale.Phys. Rev. E, 71, 65101.Google Scholar
[172] Lakes, R. S. 1987. Foam structures with a negative Poisson's ratio.Science, 235, 1038.Google Scholar
[173] Lamb, H. 1911. On the uniform motion of a sphere through a viscous fluid.Phil. Mag., 21, 112.Google Scholar
[174] Lamb, H. 1932. Hydrodynamics. Cambridge University Press.
[175] Landau, L. D. and Lifshitz, E. M. 1976. Mechanics. Third edn. Butterworth-Heinemann.
[176] Landau, L. D. and Lifshitz, E. M. 1987. Fluid Mechanics. Second edn. Butterworth-Heinemann.
[177] Landau, L. D., Pitaevskii, L. P., Lifshitz, E. M. and Kosevich, M. 1986. Theory of Elasticity. Third edn. Butterworth-Heinemann.
[178] Landman, U., Luedtke, W. D. and Ringer, E. M. 1992. Atomistic mechanisms of adhesive contact formation and interfacial processes.Wear, 153, 3.Google Scholar
[179] Langer, M., Kisiel, M., Pawlak, R. et al. 2014. Giant frictional dissipation peaks and charge-density wave slips at the NbSe2 surface.Nature Mat., 13, 173.Google Scholar
[180] Langewisch, G., Falter, J., Fuchs, H. and Schirmeisen, A. 2013. Giant frictional dissipation peaks and charge-density wave slips at the NbSe2 surface.Phys. Rev. Lett., 110, 036101.Google Scholar
[181] Lantz, M. A., OShea, S. J., Welland, M. E. and Johnson, K. L. 1997. Atomic-force-microscope study of contact area and friction on NbSe2.Phys.Rev.B, 55, 10776.Google Scholar
[182] Lantz, M. A., Wiesmann, D. and Gotsmann, B. 2009. Dynamic superlubricity and the elimination of wear on the nanoscale.Nature Nanotech., 4, 586.Google Scholar
[183] Lee, D. W., Kang, J. H., Gysin, U. et al. 2005. Fabrication and evaluation of single-crystal silicon cantilevers with ultra-low spring constants. J. Micromech. Microeng., 15, 2179.Google Scholar
[184] Leung, O. M. and Goh, M. C., 1992. Orientational ordering of polymers by atomic force microscope tip–surface interaction. Science, 255, 64.Google Scholar
[185] Lifshitz, R. and Roukes, M. 2000. Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B, 61, 5600.Google Scholar
[186] Linnemann, R., Gotszalk, T., Rangelow, I. W., Dumania, P. and Oesterschulze, E. 1996. Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers. J. Vac. Sci. Technol. B, 14, 856.Google Scholar
[187] Livshits, A. I. and Shluger, A. L. 1997. Self-lubrication in scanning-forcemicroscope image formation on ionic surfaces,. Phys. Rev. B, 56, 12482.Google Scholar
[188] Lockett, F. 1963. Indentation of a rigid/plastic material by a conical indenter. J. Mech. Phys. Sol., 11, 345.Google Scholar
[189] Loppacher, C., Bammerlin, M., Guggisberg, M. et al. 1999. Phase variation experiments in non-contact dynamic force microscopy using phase locked loop techniques. Appl. Surf. Sci., 140, 287.Google Scholar
[190] Lorenz, B. and Persson, B. N. J. 2009. Leak rate of seals: comparison of theory with experiment. Europhys. Lett., 86, 44006.Google Scholar
[191] Lorenz, B. and Persson, B. N. J. 2010. Time-dependent fluid squeeze-out between solids with rough surfaces. Eur. Phys. J. E, 32, 281.Google Scholar
[192] Lorenz, B., Persson, B. N. J., Dieluweit, S. and Tada, T. 2011. Rubber friction: comparison of theory with experiment. Eur. Phys. J. E, 34, 129.Google Scholar
[193] Love, A. E. H. 1888. On the small free vibrations and deformations of elastic shells. Phil. Trans. Roy. Soc., 17, 491.Google Scholar
[194] Love, A. E. H. 1929. Stress produced in a semi-infinite solid by pressure on part of the boundary. Phil. Trans. Roy. Soc. A, 228, 377.Google Scholar
[195] Love, A. E. H. 1939. Boussinesq's problem for a rigid cone. Quart. J. Math. (Oxford series), 10, 161.Google Scholar
[196] Luan, B. and Robbins, M. O. 2006. The breakdown of continuum models for mechanical contacts. Nature, 435, 929.Google Scholar
[197] Lubkin, J. L. 1951. Torsion of elastic spheres in contact. Trans. ASME, Series E, J. App. Mech., 18, 183.Google Scholar
[198] Luebbe, J., Troeger, L., Torbruegge, S. et al. 2010. Achieving high effective Q-factors in ultra-high vacuum dynamic force microscopy. Meas. Sci. Technol., 21, 125501.Google Scholar
[199] Lüthi, R., Meyer, E., Haefke, H., Howald, L., Gutmannsbauer, W. and Güntherodt, H. J. 1994. Sled-type motion on the nanometer scale: determination of dissipation and cohesive energies of C60. Science, 266, 1979.Google Scholar
[200] Lüthi, R., Meyer, E., Bammerlin, M. et al. 1997. Ultrahigh vacuum atomic force microscopy: true atomic resolution. Surf. Rev. Lett., 4, 1025.Google Scholar
[201] Maier, S., Sang, Y., Filleter, T. et al. 2005. Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. B, 72, 245418.Google Scholar
[202] Maier, S., Gnecco, E., Baratoff, A. and Meyer, E. 2008. Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B, 78, 045432.Google Scholar
[203] Mandel, J. 1967. Rolling resistance of an undeformable cylinder on a perfectly plastic solid. Friction and Wear (in French). GAMI, Paris.
[204] Marder, M. 1991. New dynamical equation for crack. Phys. Rev. Lett., 66, 2484.Google Scholar
[205] Marti, O., Colchero, J. and Mlynek, J. 1990. Combined scanning force and friction microscopy of mica. Nanotechnology, 1, 141.Google Scholar
[206] Mate, C. M., McClelland, G. M., Erlandsson, R. and Chiang, S. 1987. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett., 59, 1942.Google Scholar
[207] Maugis, D. 1992. Adhesion of spheres – the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci., 150, 243.Google Scholar
[208] Maxwell, J. C. 1866. On the viscosity or internal friction of air and other gases. Phil. Trans. Roy. Soc. Lond., 156, 249.Google Scholar
[209] Maxwell, J. C. 1868. On the dynamical theory of gases. Phil. Mag., 35, 129.Google Scholar
[210] May, W. D., Morris, E. L. and Atack, D. 1959. Rolling friction of a hard cylinder over a viscoelastic material. J. App. Phys., 30, 1713.Google Scholar
[211] McClelland, G. M. and Glosli, J. N. 1992. Friction at the atomic scale. NATO ASI Series E, eds. L., Singer and H. M., Pollock, vol. 220. Kluwer, Dordrecht.
[212] McGuiggan, P. M. and Israelachvili, J. N. 1990. Adhesion and short-range force between surfaces. Part II: Effects of surface lattice mismatch. J. Mater. Res., 5, 2232.Google Scholar
[213] Mecke, K. R. and Dietrich, S. 1999. Effective Hamiltonian for liquid–vapor interfaces. Phys. Rev. E, 59, 6766.Google Scholar
[214] Medyanik, S. N., Liu, W. K., Sung, I. H. and Carpick, R. W. 2006. Predictions and observations of transitions in atomic-scale stick-slip friction. Phys. Rev. Lett., 97, 136106.Google Scholar
[215] Melan, E. 1938. On the plasticity of the spatial continuum (in German). Ing. Arch., 9, 116.Google Scholar
[216] Merkle, A. P. and Marks, L. D. 2007. Friction in full view. Appl. Phys. Lett., 90, 064101.Google Scholar
[217] Meyer, E., Hug, H. and Bennewitz, R. 2004. Scanning Probe Microscopy: The Lab on the Tip. Springer.
[218] Meyer, E., Lüthi, R., Howald, L., Bammerlin, M., Guggisberg, M. and Güntherodt, H. J. 1996. Site-specific friction force spectroscopy. J. Vac. Sci. Technol. B, 14, 1285.Google Scholar
[219] Meyer, G. and Amer, N. 1990. Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett., 57, 2089.Google Scholar
[220] Mindlin, R. D. and Deresiewicz, H. 1953. Elastic spheres in contact under varying oblique forces. Trans. ASME E, J. App. Mech., 20, 327.Google Scholar
[221] Mindlin, R. D., Mason, W. P., Osmer, J. F. and Deresiewicz, H. 1952. Effects of an oscillating tangential force on the contact surfaces of elastic spheres. Proc. 1st US Nat. Congress ofApp. Mech., E., Sternberg (ed.).
[222] Minor, A. M., Morris, J. W. and Stach, E. A. 2001. Quantitative in-situ nanoindentation in an electron microscope. Appl. Phys. Lett., 79, 1625.Google Scholar
[223] Moriwaki, T. and Okuda, K. 1989. Machinability of copper in ultra-precision micro diamond cutting. Ann. CIRP, 38, 115.Google Scholar
[224] Mougin, K., Rao, A., Cuberes, M. T. et al. 2008. Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). Langmuir, 24, 1577.Google Scholar
[225] Murakami, Y. (ed.). 1987. Stress Intensity Factor Handbook. Pergamon Press.
[226] Müser, M. H. and Robbins, M. O. 2000. Conditions for static friction between flat crystalline surfaces. Phys. Rev. B, 61, 2335.Google Scholar
[227] Müser, M. H. 2004. Structural lubricity: role of dimension and symmetry. Europhys. Lett., 66, 97.Google Scholar
[228] Müser, M. H., Wenning, L. and Robbins, M. O. 2001. Simple microscopic theory of Amontons's laws for static friction. Phys. Rev. Lett., 86, 1295.Google Scholar
[229] Napolitano, S., DAcunto, M., Baschieri, P., Gnecco, E. and Pingue, P. 2012. Ordered rippling of polymer surfaces by nanolithography: influence of scan pattern and boundary effects. Nanotechnology, 23, 475301.Google Scholar
[230] Navier, C. L. M. H. 1822. Memoir on the laws of fluid motion (in French). Mem. Acad. Sci. Inst. France, 6, 380.Google Scholar
[231] Nayak, P. R. 1971. Random process model of rough surfaces. ASME J. Lubr. Technol., 93, 398.Google Scholar
[232] Neubauer, G., Cohen, S. R., McClelland, G. M., Horn, D. E. and Mate, C. M. 1990. Force microscopy with a bidirectional capacitance sensor. Rev. Sci. Instrum., 61, 2296.Google Scholar
[233] Neumeister, J. M. and Ducker, W. A. 1994. Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers. Rev. Sci. Instrum., 65, 2527.Google Scholar
[234] Nieminen, J. A. 1992. Mechanism of lubrication by a thin solid film on a metal-surface. Modelling Simul. Mater. Sci. Eng., 1, 83.Google Scholar
[235] Nita, P., Casado, S., Dietzel, D., Schirmeisen, A. and Gnecco, E. 2013. Spinning and translational motion of Sb nanoislands manipulated on MoS2. Nanotechnology, 24, 325302.Google Scholar
[236] Nita, P., Pimentel, C., Luo, F. et al. 2014. Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water. Nanoscale, 6, 8334.Google Scholar
[237] Oliver, W. C. and Pharr, G. M. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7, 1564.Google Scholar
[238] Oseen, C. W. 1910. On the Stokes' formula and a related problem in hydrodynamics (in German). Ark. Mat. Astron. Fys., 6, 1.Google Scholar
[239] Park, J. Y., Ogletree, D. F., Thiel, P. A. and Salmeron, M. 2006. Electronic control of friction in silicon pn junctions. Science, 313, 186.Google Scholar
[240] Peressadko, A. G., Hosoda, N. and Persson, B. N. J. 2005. Influence of surface roughness on adhesion between elastic bodies. Phys. Rev. Lett., 95, 124301.Google Scholar
[241] Persson, A. 1964. On the stress distribution of cylindrical elastic bodies in contact. Doctoral dissertation, Chalmers Tekniska Hogskola, Göteborg.
[242] Persson, B. N. J. 1991. Surface resistivity and vibrational damping in adsorbed layers. Phys. Rev. B, 44, 3277.Google Scholar
[243] Persson, B. N. J. 1993. Theory of friction and boundary lubrication. Phys. Rev. B, 48, 18140.Google Scholar
[244] Persson, B. N. J. 1996. On the origin of the stick-slip motion of lubricated surfaces. Chem. Phys. Lett., 254, 114.Google Scholar
[245] Persson, B. N. J. 2000. Sliding Friction: Physical Principles and Applications. Second edn. Springer.
[246] Persson, B. N. J. 2001a. Theory of rubber friction and contact mechanics. J. Chem. Phys., 155, 3840.Google Scholar
[247] Persson, B. N. J. 2001b. Theory of time-dependent plastic deformation in disordered solids. Phys. Rev. B, 61, 5949.Google Scholar
[248] Persson, B. N. J. 2002. Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E., 8, 385.Google Scholar
[249] Persson, B. N. J. 2003. On the mechanism of adhesion in biological systems. J. Chem. Phys., 118, 7614.Google Scholar
[250] Persson, B. N. J. 2006a. Contact mechanics for randomly rough surfaces. Surf. Sci. Rep., 61, 201.Google Scholar
[251] Persson, B. N. J. 2006b. Rubber friction: role of the flash temperature. J. Phys.: Condens. Matter, 18, 7789.Google Scholar
[252] Persson, B. N. J. 2007. Relation between interfacial separation and load: a general theory of contact mechanics. Phys. Rev. Lett., 99, 125502.Google Scholar
[253] Persson, B. N. J. 2010. Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces. J. Phys.: Condens. Matter, 22, 265004.Google Scholar
[254] Persson, B. N. J. 2012. Contact mechanics for layered materials with randomly rough surfaces. J. Phys.: Condens. Matter, 24, 095008.Google Scholar
[255] Persson, B. N. J. and Brener, E. A. 2005. Crack propagation in viscoelastic solids. Phys. Rev. E, 71, 036123.Google Scholar
[256] Persson, B. N. J. and Rydberg, R. 1985. Brownian motion and vibrational phase relaxation at surfaces: CO on Ni(111). Phys. Rev. B, 32, 3586.Google Scholar
[257] Persson, B. N. J. and Tosatti, E. 1994. Layering transition in con ned molecular thin lms: nucleation, growth and analogy with spreading of wetting drop. Phys. Rev. B, 50, 5590.Google Scholar
[258] Persson, B. N. J. and Tosatti, E. 1999. Theory of friction: elastic coherence length and earthquake dynamics. Solid State Commun., 109, 739.Google Scholar
[259] Persson, B. N. J. and Tosatti, E. 2000. Qualitative theory of rubber friction and wear. J. Chem. Phys., 112, 2021.Google Scholar
[260] Persson, B. N. J. and Tosatti, E. 2001. The effect of surface roughness on the adhesion of elastic solids. J. Phys. Chem., 115, 5597.Google Scholar
[261] Persson, B. N. J. and Volokitin, A. I. 1995. Electronic friction of physisorbed molecules. J. Chem. Phys., 103, 8659.Google Scholar
[262] Persson, B. N. J. and Yang, C. 2008. Theory of the leak-rate of seals. J. Phys.: Condens. Matter, 20, 315011.Google Scholar
[263] Persson, B. N. J., Albohr, O., Creton, C. and Peveri, V. 2004. Contact area between a viscoelastic solid and a hard, randomly rough substrate. J. Chem. Phys., 120, 8779.Google Scholar
[264] Persson, B. N. J., Albohr, O., Heinrich, G. and Ueba, H. 2005a. Crack propagation in rubber-like materials. J. Phys.: Condens. Matter, 17, R1071.Google Scholar
[265] Persson, B. N. J., Albohr, O., Tartaglino, U., Volokitin, A. I. and Tosatti, E. 2005b. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys.: Condens. Matter, 17, R1.Google Scholar
[266] Persson, B. N. J., Lorenz, B. and Volokitin, A. I. 2010. Heat transfer between elastic solids with randomly rough surfaces. Eur. Phys. J. E, 31, 3.Google Scholar
[267] Petroff, N. P. 1883. Friction in machines and the effect of lubricant (in Russian). Inzh. Zh. St. Petersburg, 1, 71.Google Scholar
[268] Peyrard, M. and Aubry, S. 1983. Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel–Kontorova model. J. Phys. C, 16, 1593.Google Scholar
[269] Pfeiffer, O., Loppacher, C., Wattinger, C. et al. 2000. Using higher flexural modes in non-contact force microscopy. Appl. Surf. Sci., 157, 337.Google Scholar
[270] Pietrement, O. and Troyon, M. 2001. Study of the interfacial shear strength pressure dependence by modulated lateral force microscopy. Langmuir, 17, 6540.Google Scholar
[271] Pimentel, C., Pina, C. M. and Gnecco, E. 2013. Epitaxial growth of calcite crystals on dolomite and kutnahorite (104) surfaces. Cryst. Growth Des., 13, 2557.Google Scholar
[272] Pina, C. M., Miranda, R. and Gnecco, E. 2012. Anisotropic surface coupling while sliding on dolomite and calcite crystals. Phys. Rev. B, 85, 073402.Google Scholar
[273] Poiseuille, J. L. M. 1840. Experimental research on the motion of liquids in tubes of very small diameter (in French)Computes Reduces, 11, 961.Google Scholar
[274] Polaczyk, C., Schneider, T., Schöfer, J. and Santner, E. 1998. Microtribological behavior of Au(001) studied by AFM/FFM. Surf. Sci., 402, 454.Google Scholar
[275] Prandtl, L. 1903. On the torsion of prismatic rods (in German). Phys. Zeitschr., 4, 758.Google Scholar
[276] Prandtl, L. 1918. Theory of lifting surfaces (in German). Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 151.Google Scholar
[277] Prandtl, L. 1928. A conceptual model for the kinetic theory of solids (in German). Z. angew. Math. Mech., 8, 85.Google Scholar
[278] Qi, Y., Cheng, Y. T., Cagin, T. and GoddardIII, W. A. 2002. Friction anisotropy at Ni(100)/(100) interfaces: molecular dynamics studies. Phys. Rev. B, 66, 085420.Google Scholar
[279] Rabe, U., Janser, K. and Arnold, W. 1996. Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum., 67, 3281.Google Scholar
[280] Radok, J. R. M. 1957. Viscoelastic stress analysis. Q. App. Math., 15, 198.Google Scholar
[281] Rao, A., Gnecco, E., Marchetto, D. et al. 2009a. The analytical relations between particles and probe trajectories in atomic force microscope nanomanipulation. Nanotechnology, 20, 115706.Google Scholar
[282] Rao, A., Wille, M. L., Gnecco, E., Mougin, K. and Meyer, E. 2009b. Trajectory fluctuations accompanying the manipulation of spherical nanoparticles. Phys. Rev. B, 80, 193405.Google Scholar
[283] Rast, S., Gysin, U., Ruff, P., Gerber, C., Meyer, E. and Lee, D. W. 2006. Force microscopy experiments with ultrasensitive cantilevers. Nanotechnology, 17, 189.Google Scholar
[284] Rayleigh, L. 1917. On the dynamics of revolving fluids. Proc. Roy. Soc. London A, 93, 148.Google Scholar
[285] Reynolds, O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. London, 174, 935.Google Scholar
[286] Reynolds, O. 1886. On the theory of lubrication and its application to Mr Beauchamp Tower's experiments including an experimental determination of the viscosity of olive oil. Phil. Trans. Roy. Soc. London, 177, 157.Google Scholar
[287] Ribeiro, R., Shan, Z., Minor, A. M. and Liang, H. 2007. In situ observation of nano-abrasive wear. Wear, 263, 1556.Google Scholar
[288] Rice, J. R. 1993. Spatio-temporal complexity of slip on a fault. J. Geophys. Res., 98, 9885.Google Scholar
[289] Richmond, O., Morrison, H. L. and Devenpeck, M. L. 1974. Sphere indentation with application to the Brinell hardness test. Int. J. Mech. Sci., 16, 75.Google Scholar
[290] Riedo, E., Levy, F. and Brune, H. 2002. Kinetics of capillary condensation in nanoscopic sliding friction. Phys. Rev. Lett., 88, 185505.Google Scholar
[291] Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E. and Brune, H. 2003. Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett., 91, 084502.Google Scholar
[292] Risken, H. 1989. The Fokker-Planck Equation, 2nd edn. Springer.
[293] Ritter, C., Heyde, M., Schwarz, U. D. and Rademann, K. 2002. Controlled translational manipulation of small latex spheres by dynamic force microscopy. Langmuir, 18, 7798.Google Scholar
[294] Roth, R., Fajardo, O. Y., Mazo, J. J., Meyer, E. and Gnecco, E. 2014. Lateral vibration effects in atomic-scale friction. Appl. Phys. Lett., 104, 083103.Google Scholar
[295] Rubio, G., Agrait, N. and Vieira, S. 1996. Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett., 76, 2302.Google Scholar
[296] Rugar, D., Budakian, R., Mamin, H. J. and Chui, B. W. 2004. Single spin detection by magnetic resonance force microscopy. Nature, 43, 329.Google Scholar
[297] Ruina, A. I. 1983. Slip instability and state variable friction laws. J. Geophys. Res., 88, 10359.Google Scholar
[298] Rybczynski, W. 1911. On the progressive motion of a liquid sphere in a viscous medium (in German). Bull. Acad. Sci. Cracovie A, 40.Google Scholar
[299] Sader, J. E., Chon, J. W. M. and Mulvaney, P. 1999. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instr., 70, 3967.Google Scholar
[300] Saitoh, K., Hayashi, K., Shibayama, Y. and Shirahama, K. 2010. Gigantic maximum of nanoscale noncontact friction. Phys. Rev. Lett., 105, 236103.Google Scholar
[301] Samuels, L. E. and Mulhearn, T. O. 1956. The deformed zone associated with indentation hardness impressions. J. Mech. Phys. Sol., 5, 125.Google Scholar
[302] Sang, Y., Dubé, M. and Grant, M. 2001. Thermal effects in atomic friction. Phys. Rev. Lett., 87, 174301.Google Scholar
[303] Sasaki, N. and Tsukada, M. 2001. Theoretical evaluation of the frequency shift and dissipated power in noncontact atomic force microscopy. Appl. Phys. A, 72, S39.Google Scholar
[304] Schmidt, R. H., Haugstad, G. and L.Gladfelter, W. 1999. Correlation of nanowear patterns to viscoelastic response in a thin polystyrene melt. Langmuir, 15, 317.Google Scholar
[305] Schwarz, U. D., Zwörner, O., Köster, P. and Wiesendanger, R. 1997. Quantitative analysis of the frictional properties of solid materials at low loads. Phys. Rev. B, 56, 6987.Google Scholar
[306] Sharvin, Y. V. 1965. A possible method for studying Fermi surfaces. Sov. Phys. JETP, 21, 655.Google Scholar
[307] Sheehan, P. E. and Lieber, C. M. 1996. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science, 272, 1158.Google Scholar
[308] Sih, J. C. 1973. Handbook of Stress-Intensity Factors. Inst. of Fracture and Solid Mech., Lehigh University.
[309] Sneddon, I. N. 1946. Boussinesq's problem for a flat-ended cylinder. Proc. Cambridge Phil. Soc., 42, 29.Google Scholar
[310] Sneddon, I. N. 1965. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci., 3, 47.Google Scholar
[311] Socoliuc, A., Gnecco, E., Bennewitz, R. and Meyer, E. 2003. Ripple formation induced in localized abrasion. Phys. Rev. B, 68, 115416.Google Scholar
[312] Socoliuc, A., Bennewitz, R., Gnecco, E. and Meyer, E. 2004. Transition from stickslip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett., 92, 134301.Google Scholar
[313] Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A. and Meyer, E. 2006. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science, 313, 207.Google Scholar
[314] Sørensen, M. R., Jacobsen, K. W. and Stoltze, P. 1996. Simulations of atomic-scale sliding friction. Phys. Rev. B, 53, 2101.Google Scholar
[315] Spence, D. A. 1973. An eigenvalue problem for elastic contact with finite friction. Proc. Cambridge Phil. Soc., 73, 249.Google Scholar
[316] Steele, W. A. 1973. The physical interaction of gases with crystalline solids. Surf. Sci., 36, 317.Google Scholar
[317] Steiner, P., Roth, R., Gnecco, E., Glatzel, T., Baratoff, A. and Meyer, E. 2009. Modulation of contact resonance frequency accompanying atomic-scale stick-slip in friction force microscopy. Nanotechnology, 20, 495701.Google Scholar
[318] Steiner, P., Roth, R., Gnecco, E., Baratoff, A. and Meyer, E. 2010. Angular dependence of static and kinetic friction on alkali halide surfaces. Phys. Rev. B, 82, 205417.Google Scholar
[319] Steiner, P., Gnecco, E., Krok, F., et al. 2011. Atomic-scale friction on stepped surfaces of ionic crystals. Phys. Rev. Lett., 106, 186104.Google Scholar
[320] Stillinger, F. H. and Weber, T. A. 1985. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 31, 5262.Google Scholar
[321] Stilweel, N. A. and Tabor, D. 1961. Elastic recovery of conical indentations. Proc. Phys. Soc, 78, 169.Google Scholar
[322] Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. and Rugar, D. 2001. Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry. Phys. Rev. Lett., 86, 2874.Google Scholar
[323] Stokes, G. G. 1845. On the theories of internal friction of fluids in motion. Trans. Cambridge Phil. Soc., 8, 287.Google Scholar
[324] Stokes, G. G. 1851. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc., 9, 8.Google Scholar
[325] Stolarski, T. A. 1990. Tribology in Machine Design. Butterworth-Heinemann Ltd.
[326] Such, B., Krok, F. and Szymonski, M. 2008. AFM tip-induced tipple pattern on AIII-BV semiconductor surfaces. Appl. Surf. Sci., 254, 5431.Google Scholar
[327] Tabor, D. 1948. A simple theory of static and dynamic hardness. Proc. Roy. Soc. A, 192, 247.Google Scholar
[328] Tabor, D. 1977. Surface forces and surface interactions. J. Colloid Interface Sci., 58, 2.Google Scholar
[329] Tanner, L. 1979. The spreading of silicon oil drops on horizontal surfaces. J. Phys. D, 12, 1473.Google Scholar
[330] Taylor, G. I. 1923. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. London A, 233, 289.Google Scholar
[331] Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. and Heinrich, A. J. 2008. The force needed to move an atom on a surface. Science, 319, 1066.Google Scholar
[332] Tomlinson, G. A. 1929. A molecular theory of friction. Phil. Mag., 7, 905.Google Scholar
[333] Tripathi, M., Paolicelli, G., D'Addato, S. and Valeri, S. 2012. Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures. Nanotechnology, 23, 245706.Google Scholar
[334] Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. and Tosatti, E. 2013. Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys., 85, 529.Google Scholar
[335] Verhoeven, G. S., Dienwiebel, M. and Frenken, J. W. M. 2004. Model calculations of superlubricity of graphite. Phys. Rev. B, 70, 165418.Google Scholar
[336] Volokitin, A. I., Persson, B. N. J. and Ueba, H. 2006. Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems. Phys.Rev.B, 73, 165423.Google Scholar
[337] von Kármán, T. 1921. On the laminar and turbulent friction (in German). ZAMM, 1, 233.Google Scholar
[338] von Kármán, T. 1930. Mechanical similitude and turbulence (in German). Nach. Ges. Wiss. Göttingen, Math.- Phys. Kl., 5, 58.Google Scholar
[339] von Mises, R. 1913. Mechanics of solid bodies in plastic deformable state (in German). Nach. Ges. Wiss. Göttingen, Math.- Phys. Kl., 1, 582.Google Scholar
[340] von Schlippe, B. and Dietrich, R. 1941. Shimmying of a pneumatic wheel (in German). Ber. Lilienthal Ges., 140, 35.Google Scholar
[341] Westergaard, H. M. 1939. Bearing pressures and cracks. J. App. Mech., 6, 49.Google Scholar
[342] Williams, M. L., Landel, R. F. and Ferry, J. D. 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Amer. Chem. Soc., 77, 3701.Google Scholar
[343] Wyder, U., Baratoff, A., Meyer, E. et al. 2007. Interpretation of atomic friction experiments based on atomistic simulations. J. Vac. Sci. Technol. B, 25, 1547.Google Scholar
[344] Yang, C. and Persson, B. N. J. 2008. Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys.: Condens. Matter, 20, 215214.Google Scholar
[345] Yang, J. 2000. Surface effects and high quality factors in ultra-thin single-crystal silicon cantilevers. Appl. Phys. Lett., 77, 3860.Google Scholar
[346] Yang, W. H. 1966. The contact problem for viscoelastic bodies. Trans. ASME, Series E, J. App. Mech., 33, 395.Google Scholar
[347] Yanson, A. I., Rubio Bollinger, G., Van den Brom, H. E., Agrait, N. and van Ruiten-beek, J. M. 1998. Formation and manipulation of a metallic wire of single gold atoms. Nature, 395, 783.Google Scholar
[348] Yoshizawa, H., Chen, Y. L. and Israelachvili, J. 1993. Recent advances in molecular level understanding of adhesion, friction and lubrication. Wear, 168, 161.Google Scholar
[349] Young, T. 1805. An essay on the cohesion of fluids. Phil. Trans. Roy. Soc. London, 95, 65.Google Scholar
[350] Zener, C. 1938. Interfacial friction in solids III. Experimental demonstration of thermoelastic internal friction. Phys. Rev., 53, 100.Google Scholar
[351] Zhao, X., Hamilton, M., Sawyer, W. G. and Perry, S. S. 2007. Thermally activated friction. Tribol. Lett., 27, 113.Google Scholar
[352] Zilberman, S., Becker, T., Mugele, F., Persson, B. N. J. and Nitzan, A. 2003. Dynamics of squeeze-out: theory and experiments. J. Chem. Phys., 118, 11160.Google Scholar
[353] Zwörner, O., Hölscher, H., Schwarz, U. D. and Wiesendanger, R. 1998. The velocity dependence of friction forces in point-contact friction. Appl. Phys. A, 66, 263.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Enrico Gnecco, Ernst Meyer, Universität Basel, Switzerland
  • Book: Elements of Friction Theory and Nanotribology
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511795039.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Enrico Gnecco, Ernst Meyer, Universität Basel, Switzerland
  • Book: Elements of Friction Theory and Nanotribology
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511795039.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Enrico Gnecco, Ernst Meyer, Universität Basel, Switzerland
  • Book: Elements of Friction Theory and Nanotribology
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511795039.029
Available formats
×