Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T03:26:46.140Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 May 2011

John D. Milliman
Affiliation:
College of William and Mary, Virginia
Katherine L. Farnsworth
Affiliation:
Indiana University of Pennsylvania
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
River Discharge to the Coastal Ocean
A Global Synthesis
, pp. 333 - 366
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, R., Dunne, T. & Guyot, J. L. (2006). Geomorphic control on Andean denudation rates. J. Geol., 114, 85–99.CrossRefGoogle Scholar
Aalto, R.et al. (2003). Episodic sediment accumulation on Amazonian flood plains influenced by El Nino/Southern Oscillation. Nature, 425, 493–497.CrossRefGoogle ScholarPubMed
Abdul Rahmin, N. (1988). Water yield changes after forest conversion to agriculture land use in peninsular Malaysia. J. Trop. For. Sci., 1, 67–84.Google Scholar
Adam, J. C.et al. (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Proc., 23, 962–972.CrossRef
Adel, M. M. (2001). Effect on water resources from upstream water diversion in the Ganges Basin. J. Environ. Qual., 30, 356–368.CrossRefGoogle ScholarPubMed
Ahnert, F. (1970). Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basins. Am. J. Sci., 268, 243–263.CrossRefGoogle Scholar
Akbulut, N. E.et al. (2009). Rivers of Turkey, in Rivers of Europe, eds. Tockner, K., Robinson, C. T. & Uehlinger, U., Amsterdam: Elsevier, pp. 643–672.Google Scholar
Akrasi, S. A. & Ayibotele, N. B. (1984). An appraisal of sediment transport measurement in Ghanian rivers. IAHS Publ., 144, 301–312.Google Scholar
Aldrian, E., Chen, C. T. A. & Adi, S. (2008). Spatial and seasonal dynamics of riverine carbon fluxes of the Brantas catchment in East Java. J. Geophys. Res., 113 doi: 10.1029/2007JG000626Sep 2008.CrossRefGoogle Scholar
Alexander, R. B.et al. (1996). Data from Selected US Geological Survey National Stream Water Quality Monitoring Networks (WQN); USGS Digital Data Series DDS-37.
Algan, O.et al. (1997). Riverine Fluxes into the Black and Marmara Seas. CIESM Workshop Monographs, 30, 47–53.
Allen, G. P., Laurier, D. & Thouvenin, J. (1979). Etude sédimentologique du Delta de la Mahakam, in Notes et Mémoires No. 15, Paris: Compagnie Francaise des Petroles, p. 156.Google Scholar
Allen, P. A. & Hovius, N. (2000). Sediment supply from landslide-dominated catchments: implications for basin-margin fans. Basin Res., 10, 19–35.CrossRefGoogle Scholar
Alt-Epping, U.et al. (2007). Provenance of organic matter and nutrient conditions on a river-and upwelling influenced shelf: a case study from the Portuguese margin. Mar. Geol., 243, 169–179.CrossRefGoogle Scholar
Alverson, K. D., Bradley, R. S. & Pedersen, T. F. (eds.) (2003). Paleoclimate, Global Change and the Future, Berlin: Springer-Verlag.CrossRef
Amarasekera, K. N.et al. (1997). ENSO and the natural ­variability in the flow of tropical rivers. J. Hydrol., 200, 24–39.CrossRefGoogle Scholar
Amery, H. A. (1993). The Litani River of Lebanon. Geogr. Rev., 83, 229–237.CrossRefGoogle Scholar
Amoitte Suchet, P., Probst, J.-L. & Ludwig, W. (2003). Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem. Cycles, 17, 1–13.Google Scholar
Anchukaitis, K. J.et al. (2006). Forward modeling of regional scale tree-ring patterns in the southeastern United States and the recent influence of summer drought. Geophys. Res. Lett, 33, L04705.CrossRefGoogle Scholar
Anderson, S. P. (2005). Glaciers show direct linkage between erosion rate and chemical weathering fluxes. Geomorph., 67, 147–157.CrossRefGoogle Scholar
Anderson, S. P., Dietrich, W. E. & Brimhall, G. H. J. (2002). Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small steep catchment. Geol. Soc. Amer. Bull., 114, 1143–1158.Google Scholar
Anderson, S. P., Drever, J. I. & Humphrey, N. F. (1997). Chemical weathering in glacial environments. Geology, 25, 399–402.2.3.CO;2>CrossRefGoogle Scholar
Andrews, E. D.et al. (2004). Influence of ENSO on flood frequency along the California coast. J. Clim., 17, 337–348.2.0.CO;2>CrossRefGoogle Scholar
Andrews, J. T. & Syvitski, J. P. M. (1994). Sediment fluxes along high latitude glaciated continental margins: Northeast Canada and eastern Greenland, in Global Sedimentary Geofluxes, ed. Hay, W. W., National Academy of Sciences Press, pp. 99–115.Google Scholar
Anthony, E. J. & Julian, M. (1997). The 1979 Var Delta landslide on the French Riviera; a retrospective analysis. J. Coast. Res., 13, 27–35.Google Scholar
Antweiler, R. C., Goolsby, D. A. & Taylor, H. E. (1995). Nutrients in the Mississippi River, in Meade, R. H. (ed.), Contaminants in the Mississippi River, 1987–1992. US Geological Survey Circular 1133, pp. 73–86.Google Scholar
Aquater, (1982). Regione Marche: Studio general per la difesa della costa primera fase: San Lorenzo in Campo.
Arboleda, R. A. & Martinez, M. L. (1992). Lahars in the Pasig–Potrero River system, in Fire and mud: Eruptions and Lahars of Mount Pinatubo, eds. Newhall, C. G. & Punongbayan, R. S., Seattle: University of Washington Press.Google Scholar
Arnborg, L., Walker, H. J. & Peippo, J. (1967). Suspended load in the Colville River, Alaska, 1962. Geogr. Ann., 49A, 131–144.CrossRefGoogle Scholar
Arnell, N. (1996). Global Warming, River Flows and Water Resources, Chichester: John Wiley and Sons, p. 224.Google Scholar
Artinyan, E.et al. (2008). Modeling the water budget and the riverflows of the Maritsa basin in Bulgaria. Hydrol. Earth Syst. Sci., 12, 475–521.CrossRefGoogle Scholar
Asselman, N. E. M. & Middlelkoop, H. (1995). Floodplain sedimentation: quantities, patterns and processes. Earth Surface Proc. Landforms. Earth Surf. Processes Landforms, 20, 481–499.CrossRefGoogle Scholar
Atwater, B. F. (1987). Status of glacial Lake Columbia during the last floods from glacial Lake Missoula. Quat. Res., 27, 182–201.CrossRefGoogle Scholar
Audley-Charles, M. G., Curray, J. R. & Evans, G. (1977). Location of major deltas. Geology, 5, 3341–3344.2.0.CO;2>CrossRefGoogle Scholar
Aulenbach, B. T., Buxton, H. T., Battaglin, W. A. & Coupe, R. H. (2007). Streamflow and Nutrient Fluxes of the Mississippi–Atchafalaya River Basin and Subbasins for the Period of Record Through 2005. USGS Open-file Report 2007–1080.
Council, Australian Water Resources (1978). Variability of runoff in Australia, p. 44.
Awadallah, R. M. & Soltan, M. E. (1995). Chemical survey of the Rile Nile from Aswan into the outlet. J. Environ. Sci. Heal. A, 30, 1647–1658.Google Scholar
Axtmann, E. V. & Stallard, R. F. (1995). Chemical weathering in the South Cascade Glacier basin, comparison of subglacial and extra-glacial weathering. IAHS Publ., 228, 431–438.Google Scholar
Ayibotele, N. B. & Tuffour-Darko, T. (1979). Sediment loads in the southern rivers of Ghana, Water Resources Research Unit - CSIR, 44.
Baade, J. & Hesse, R. (2008). An overlooked sediment trap in arid environments: ancient irrigation agriculture in the coastal desert of Peru. IAHS Publ. 325, 375–382.Google Scholar
Bailey, R. C. (2005). Yukon River Basin, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 774–802.Google Scholar
Baker, P. A.et al. (2001). The history of South American tropical precipitation for the past 25,000 years. Science, 291, 640–643.CrossRefGoogle ScholarPubMed
Baker, V. R. (2002). High-energy megafloods: planetary settings and sedimentary dynamics. Flood and Megaflood Processes and Deposits: Recent and Ancient Examples, pp. 3–15.Google Scholar
Baker, V. R. & Bunker, R. C. (1985). Cataclysmic late Pleistocene flooding from Glacial Lake Missoula: A review. Quat. Sci. Rev., 4, 1–41.CrossRefGoogle Scholar
Baker, V. R.et al. (1992). Channels and valley networks, in Mars, eds. Kieffer, H. H., Jakosky, B. & Snyder, C., Tucson: University of Arizona Press, pp. 493–522.Google Scholar
Baker, V. R.et al. (1995). Late Quaternary paleohydrology of arid and semi-arid regions, in Global Continental Paleohydrology, eds. Gregory, K. J., Starkel, L. & Baker, V. R., Chichester: John Wiley & Sons, pp. 203–231.Google Scholar
Balamurugan, S. (1991). Tin mining and sediment supply in Peninsular Malaysia with special reference to the Kelang River basin. The Environmentalist, 11, 281–291.CrossRefGoogle Scholar
Balamurugun, S. Bergstrom & Lindstrom, G. (1999). Floods in regulated rivers and physical planning in Sweden. Contribution to ICOLD Workshop on Benefits and Concerns About Dams, Antalya, Turkey, p. 11.
Baldwin, C. K. & Lall, U. (1999). Seasonality of streamflow: the upper Mississippi River. Water Resour. Res., 35, 1143–1154.CrossRefGoogle Scholar
Balogh-Brunstad, Z.et al. (2008). Chemical weathering and chemical denudation dynamics through ecosystem development and disturbance. Global Biogeochem. Cycles, 22 doi:10.1029/2007GB002957.CrossRefGoogle Scholar
Board, Bangladesh Water Development (1983). Basic consideration on the morphology and land accretion potentials in the estuary of the Lower Meghna River, 39 pp.
Bar-Matthews, M.et al. (2003). Sea–land oxygen isotopic ­relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta, 67, 3181–3199.CrossRefGoogle Scholar
Bard, E., Hamelin, B. & Fairbanks, R. G. (1990). U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature, 346, 456–458.CrossRefGoogle Scholar
Barnett, T. P. & Pierce, D. W. (2008). When will Lake Mead go dry?Water Resour. Res., 44, W3201.CrossRefGoogle Scholar
Barnett, T. P.et al. (2008). Human-induced changes in the hydrology of the western United States. Science, 319, 1080.CrossRefGoogle ScholarPubMed
Barrow, C. J. (1991). Land Degradation: Development and Breakdown of Terrestrial Environments, Cambridge: Cambridge University Press.Google Scholar
Bartolini, C., Caputo, R. & Pieri, M. (1996). Pliocene–Quaternary sedimentation in the northern Apennine foredeep and related denudation. Geol. Mag., 133, 255–273.CrossRefGoogle Scholar
Baumgartner, A. & Reichel, E. (1975). The World Water Balance. Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Run-off, Amsterdam: Elsevier.Google Scholar
Bayley, S. E.et al. (1992). Effects of multiple fires on nutrient yields from streams draining boreal forest and fen watersheds: nitrogen and phosphorus. Can. J. Fish. Aquatic Sci., 49, 584–596.CrossRefGoogle Scholar
Becker, A.et al. (2004). Responses of hydrological processes to environmental change at small catchment scales, in Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System, eds. Kabat, P.et al., Springer-Verlag, pp. 301–338.Google Scholar
Beckinsale, R. P. (1969). River regimes, in Water, Earth and Man, ed. Chorley, R. J., London: Methuen, pp. 176–192.Google Scholar
Begueria, S. (2006). Changes in land cover and shallow landslide activity: A case study in the Spanish Pyrenees. Geomorph., 74, 196–206.CrossRefGoogle Scholar
Bellotti, P.et al. (1994). Sequence stratigraphy and depositional setting of the Tiber Delta – integration of high resolution seismics, well logs and archeological data. J. Sed. Res., B64, 416–432.Google Scholar
Belperio, A. P. (1979). The combined use of washload and bed material load rating curves for the calculation of the total load, an example from the Burdekin River, Australia. Catena, 6, 317–329.CrossRefGoogle Scholar
Belperio, A. P. (1983). Terrigenous sedimentation in the central Great Barrier Reef lagoon; a model from the Burdekin region. BMR J. Aust. Geol. Geoph., 8, 179–190.Google Scholar
Beltaos, S. (1999). Climatic effects on the changing ice-breakup regime of the Saint John River, in Proc. 10th Workshop on River IceWinnipeg, CA, pp. 252–264.Google Scholar
Beltaos, S. & Burrell, B. C. (2002). Extreme ice jam floods along the Saint John River, New Bruswick, Canada. IAHS Publ. 271, 9–14.Google Scholar
Benito, G. & O'Connor, J. E. (2003). Number and size of last-glacial Missoula floods in the Columbia River valley between the Pasco Basin, Washington, and Portland, Oregon. Geol. Soc. Amer. Bull., 115, 624.2.0.CO;2>CrossRefGoogle Scholar
Berner, E. L. & Berner, R. A. (1987). The Global Water Cycle: Geochemistry and Environment, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Berner, R. A. (1994). GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Amer. J. Sci., 294, 56–91.CrossRefGoogle Scholar
Berner, R. A. (2004). The Phanerozoic Carbon Cycle: CO2and O2, New York: Oxford University Press.Google Scholar
Berner, R. A.et al. (2003). Phanerozoic atmospheric oxygen. Ann. Rev. Earth lPanet. Sci., 31.CrossRefGoogle Scholar
Best, D. W. (1995). History of timber harvest in the Redwood Creek basin, northwestern California, USGS Prof. Paper 1454, C1-C7.
Beusen, A. H. W.et al. (2005). Estimation of global river transport of sediments and associated C, N, and P. Global Biogeochem. Cycles, 19.CrossRefGoogle Scholar
Bianchi, T. S.et al. (2008). Controlling hypoxia on the US Louisiana shelf: beyond the nutrient-centric view. EOS, 89, 26.CrossRefGoogle Scholar
Biksham, G. & Subramanian, V. (1988). Sediment transport of the Godavari River basin and its controlling factors. J. Hydrol., 101, 275–290.CrossRefGoogle Scholar
Billi, P. & Rinaldi, M. (1997). Human impact on sediment yield and channel dynamics in the Arno River basin (central Italy). IAHS Publ. 245, 301–311.Google Scholar
Binda, G. G., Day, T. J. & Syvitski, J. P. M. (1986). Terrestrial sediment transport into the marine environment of Canada, Environment Canada, p. 85.
Biswas, A. K. (1994). International Waters of the Middle East: From Euphrates–Tigris to Nile, Oxford University Press.Google Scholar
Bjørnsson, H. (1979). Glaciers in Iceland. Jokull, 29, 74–79.Google Scholar
Bjørnsson, H. (1992). Jokulhlaups in Iceland: prediction characteristics and simulation. Ann. Glaciol. Soc., 16, 95–106.CrossRefGoogle Scholar
Bjørnsson, H. (1995). Exursion Roadlog, in AGS International Symposium on Glacial Erosion and SedimentationRekkvjk, Iceland.Google Scholar
Blair, N. E.et al. (2003). The persistence of memory: the fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochim. Cosmochim. Acta, 67, 63–73.CrossRefGoogle Scholar
Blong, R. J. (1991). The magnitude and frequency of large landslides in the Ok Tedi catchment. Report, Ok Tedi Mining, Ltd, Tabubil, Papua New Guinea.
Blum, M. D. & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci., 2, 488–491.CrossRefGoogle Scholar
Bluth, G. J. S. & Kemp, L. R. (1994). Lithologic and climatologic controls on river chemistry. Geochim. Cosmochim. Acta, 58, 2341–2359.CrossRefGoogle Scholar
Bobrovitskaya, N. N. (1996). Long-term variations in mean erosion and sediment yield from rivers of the former Soviet Union. IAHS Publ. 236, 407–413.Google Scholar
Boesch, D. F.et al. (2009). Nutrient enrichment drives Gulf of Mexico hypoxia. EOS, 90, 117–118.CrossRefGoogle Scholar
Bogdanova, E. G.et al. (2002). A new model for bias correction of precipitation measurements, and its application to polar regions of Russia. Russ. Meteorol. Hydrol., 10, 68–94.Google Scholar
Bogen, J. (1996). Erosion and sediment yield in Norwegian Rivers. IAHS Publ. 236, 73–84.Google Scholar
Bohannon, J. (2010). The Nile's Delta's shrinking future. Science,
Bonell, M., Hufschmidt, M. M. & Gladwell, J. S. (eds.) (1993). Hydrology and Water Management in the Humid Tropics, Cambridge: Cambridge University Press.CrossRef
Borchet, G. & Kempe, S. (1985). A Zambezi Aqueduct, in Transport of Carbon Minerals in Major World Rivers, pt. 3, eds. Degens, E. T., Kempe, S. & Herrera, R., Hamburg: Mitt. Geol.-Palaont. Inst. Univ., pp. 443–457.Google Scholar
Bork, H. R.et al. (1998). Landschaftsentwicklung in Mitteleuropa, Klett-Perthes Gotha.Google Scholar
Borland, W. M. (1973). Pa Mong Phase II: Supplement to the Main Report (Hydraulics and Sediment Studies),US Bureau Recl.Google Scholar
Boufous, L. (1982). Definition des mesures contre l'envasement de la retenue sur l'Oued Nekur au Maroc, in 14th Congress CIBG, Rio De Janeiro, pp. 11–20.Google Scholar
Bourgoin, L. M.et al. (2007). Temporal dynamics of water and sediment exchanges between the Curuai floodplain and the Amazon River, Brazil. J. Hydrol., 335, 140–156.CrossRefGoogle Scholar
Bowling, L. C. & Lettenmaier, D. P. (2001). The effects of forest roads and harvest on catchment hydrology in a mountainous maritime environment. Water Sci. Appl., 2, 145–164.CrossRefGoogle Scholar
Brabets, T. P., Wang, B. & Meade, R. H. (2000). Environmental and hydrologic overview of the Yukon River basin, Alaska and Canada, US Geol. Survey, 106.
Braconnot, P. et al., (2004). Evaluation of PMIP coupled ­ocean–atmosphere simulations of the mid-Holocene. In R. W. Battarbee, F. Gasse and C. E. Stickley (eds.), Past Climate Variability through Europe and Africa. Developments in Paleoenvironmental Research, 6. Springer, Dordrecht.CrossRef
Brardinoni, F., Hassan, M. A. & Slaymaker, H. O. (2003). Complex mass wasting response of drainage basins to forest management in coastal British Columbia. Geomorph., 49, 109–124.CrossRefGoogle Scholar
Bresson, L.-M. & Valentin, C. V. (1994). Soil surface crust formation: contribution of micromorphology, in Soil Micromorphology: Studies in Management and Genesis, eds. Ringoses-Voase, A. J. & Humphreys, G. S., Amsterdam: Elsevier, pp. 737–762.Google Scholar
Bretz, J. H. (1930). Lake Missoula and the Spokane flood. Geol. Soc. Amer. Bull., 41, 461–468.Google Scholar
Bretz, J. H. (1969). The Lake Missoula floods and the channeled scabland. J. Geol., 77, 505–543.CrossRefGoogle Scholar
Bridge, J. S. (2003). Rivers and Floodplains, Wiley-Blackwell.Google Scholar
Brittain, J. E.et al. (2009). Arctic rivers, in Rivers of Europe, eds. Tockner, K., Robinson, C. T. & Uehlinger, U., Amsterdam: Elsevier, pp. 337–379.Google Scholar
Broecker, W. S. (1989). Routing of meltwater from the Laurentide Ice Shelf during the younger Dryas cold episode. Nature, 341, 318–321.CrossRefGoogle Scholar
Brookfield, H.et al. (1992). Borneo and the Malay Peninsula, in The Earth as Transformed by Human Action, eds. Turner, B. L., II et al., Cambridge: Cambridge University Press, pp. 495–512.Google Scholar
Brooks, D. (1999). Bobos in Paradise, New York: Simon and Schuster.Google Scholar
Brown, W. M. (1973). Streamflow, sediment, and turbidity in the Mad River basin, Humboldt and Trinity Counties, California. USGS Water-Resour. Invest. Rept. 73–36.
Brown, G. W. & Krygier, J. T. (1971). Clear-cut logging and sediment production in the Oregon Coast Range. Water Resour. Res., 7.CrossRefGoogle Scholar
Brown, W. M. & Ritter, J. R. (1971). Sediment transport and turbidity in the Eel River basin, California, US Geol. Survey Open-File Rept., 67pp.
Brownlie, W. R. & Taylor, B. D. (1981). Sediment management for the southern California mountains, coastal plains, and shoreline, Part C: Coastal sediment delivery by major rivers in southern California. California Institute of Technology, Environ. Qual. Lab Rep, 17-C.
Brummett, R. E. & Teugels, G. G. (2004). Rivers of the Lower Guinean rainforest: Biogeography and sustainable exploitation, FAO Regional Rept. 007, 149–171.Google Scholar
Brunner, C. A.et al. (1999). Deep-sea sedimentary record of the late Wisconsin cataclysmic floods from the Columbia River. Geology, 27, 463–466.2.3.CO;2>CrossRefGoogle Scholar
Brush, G. S. (2001). Natural and anthropogenic changes in Chesapeake Bay during the last 1000 years. Hum. Ecol. Risk Assess, 7, 1283–1296.CrossRefGoogle Scholar
Bryce, S., Larcombe, P. & Ridd, P. V. (1998). The relative importance of landward-directed tidal sediment transport versus freshwater flood events in the Normanby River estuary, Cape York Peninsula, Australia. Mar. Geol., 149, 55–78.CrossRefGoogle Scholar
Budyko, M. I. (1974). Climate and Life (translated from Russian by D. H. Miller), San Diego: Academic Press.Google Scholar
Bue, C. D. (1970). Streamflow from the United States into the Atlantic Ocean during 1931–1960, U.S. Geol. Survey open-File Rept., 36 pp.
Burman, J.-O. (1983). Element transports in suspended and dissolved phases in the Kalix River. Environ. Biogeochem. Ecol. Bull., 35, 99–113.Google Scholar
Burns, D. A.et al., (1998). Base cation concentrations in subsurface flow from a forested hillslope: The role of flushing frequency. Water Resour. Res., 34, 3535–3544.CrossRefGoogle Scholar
Burn, D. A. et al. (2003). The geochemical evolution of riparian ground water in a forested piedmont catchment. Ground Water, 41, 913–925.Google Scholar
Burt, T. P. (1992). The hydrology of headwater catchments, in The Rivers Handbook, eds. Calow, P. & Petts, G. E., Oxford: Blackwell Science, pp. 3–28.Google Scholar
Burz, J. (1977). Suspended load discharge in the semiarid region of the northern Peru. IAHS Publ. 122, 269–277.Google Scholar
Butler, D. R. (1995). Zoogeomorphology – Animals as Geomorphic Agents, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Butler, D. R. (2006). Human-induced changes in animal populations and distributions, and the subsequent effects on fluvial systems. Geomorph., 79, 448–459.CrossRefGoogle Scholar
Butler, D. R. & Malanson, G. P. (2005). The geomorphic influences of beaver dams and failures of beaver dams. Geomorph., 71, 48–60.CrossRefGoogle Scholar
Committee, Canadian National (1972). Discharge of Selected Rivers of Canada, Ottawa: Canadian National Committee for the International Hydrological Decade.Google Scholar
Cañon, J., Gonzalvev, J. & Valdes, J. (2007). Precipitation in the Colorado River Basin and its low frequency associations with PDO and ENSO signals. J. Hydrol., 333, 252–264.CrossRefGoogle Scholar
Canton, Y.et al. (2001). Hydrological and erosion response of a badlands system in semiarid SE Spain. J. Hydrol., 252, 65–84.CrossRefGoogle Scholar
Carling, P. A.et al. (2002). Late Quaternary catastrophic flooding in the Altai Mountains of south-central Siberia: a synoptic overview and introduction to flood deposit sedimentology. Flood and megaflood processes and deposits: recent and ancient examples, Oxford, Blackwell Scientific, pp. 17–35.Google Scholar
Carter, J. L. & Resh, V. H. (2005). Pacific coast rivers of the conterminous United States, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 540–589.Google Scholar
Carvalho, N. O. (2008). Hidrossedimentologia Pratica (2nd edn.), Rio de Janeiro: Editoria Interciencia.Google Scholar
Carvalho, N. O. & Cunha, S. B. (1998). Estimata da carga solida do Rio Amazonas e seus principas tributarios para a foz e oceano: uma retrospectiva. A Agua em Revista, CPRM, 6, 44–58.Google Scholar
Cattaneo, A. (1995). The rivers of Italy, in River and Stream Ecosystems, eds. Cushing, C. E., Cummins, K. W. & Minshall, G. W., Amsterdam: Elsevier.Google Scholar
Cayan, D. R. & Webb, R. H. (1992). El Niño/Southern Oscillation and streamflow in the western United States, in El Niño. Historical and Paleoclimatic Aspects of the Southern Oscillation, eds. Diaz, H. F. & Markgraf, V., Cambridge: Cambridge University Press, pp. 58–68.Google Scholar
Center for Natural Resources, Energy and Transport (UN) (1978). Register of International Rivers, UN.
Cerdà, A. & Lasanta, T. (2005). Long-term erosional responses after fire in the central Spanish Pyrenees 1. Water and sediment yield. Catena, 60, 59–80.CrossRefGoogle Scholar
Chang, J. & Slaymaker, O. (2002). Frequency and spatial distribution of landslides in a mountainous drainage basin: Western Foothills, Taiwan. Catena, 46, 285–307.CrossRefGoogle Scholar
Chaperon, P., Danloux, J. & Ferry, L. (1993). Rivers of Madagascar, Monogr. Hydrol., ORSTOM, Paris.Google Scholar
Chatwin, S. C. & Smith, R. B. (1992). Reducing soil erosion associated with forestry operations through integrated research: an example for coastal British Columbia, Canada. IAHS Publ. 209, 377–385.Google Scholar
Chen, C. T. A. (2000). The Three Gorges Dam: reducing the upwelling and thus productivity in the East China Sea. Geophys. Res. Lett., 27, 381–383.CrossRefGoogle Scholar
Chen, Y. (2009). Did the reservoir impoundment trigger the Wenchuar earthquake? Science in China D. Earth Sci. 52, 431–433.
Chen, C. T. A., Liu, J. T. & Tsuang, B. J. (2004). Island-based catchment – The Taiwan example. Reg. Environ. Change, 4, 39–48.CrossRefGoogle Scholar
Chen, J., He, D. & Cui, S. (2003). The response of river water quality and quantity to the development of irrigated agriculture in the last 4 decades in the Yellow River Basin, China. Water Resour. Res., 39, 1047.CrossRefGoogle Scholar
Chen, X.et al. (2001). Human impacts on the Changjiang (Yangtze) River basin, China, with special reference to the impacts on the dry season water discharges into the sea. Geomorph., 41, 111–123.CrossRefGoogle Scholar
Chen, Z.et al. (2001). Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorph., 41, 77–91.CrossRefGoogle Scholar
Chin, A. (2006). Urban transformation of river landscapes in a global context. Geomorph., 79, 460–487.CrossRefGoogle Scholar
Choudhury, A. M. (1978). Bangladesh floods, cyclones and ENSO. IAEA-UNESCO Int. Centre for Theoretical Physics, 8.
Church, T. M. (1996). An underground route for the water cycle. Nature, 380, 579–580.CrossRefGoogle Scholar
Ciavola, P.et al. (1999). Relation between river dynamics and coastal changes in Albania: an assessment integrating satellite imagery with historical data. Int. J. Remote Sens., 20, 561–584.CrossRefGoogle Scholar
Clague, J. J.et al. (2003). Paleomagnetic and tephra evidence for tens of Missoula floods in southern Washington. Geology, 31, 247–250.2.0.CO;2>CrossRefGoogle Scholar
Clair, T. A., Pollock, T. L. & Ehrman, J. M. (1994). Exports of carbon and nitrogen from river basins in Canada's Atlantic Provinces. Global Biogeochem. Cycles, 8, 441–450.CrossRefGoogle Scholar
Clark, J. J. & Wilcock, P. R. (2000). Effects of land-use change on channel morphology in northeastern Puerto Rico. Geol. Soc. Amer. Bull., 112, 1763–1777.2.0.CO;2>CrossRefGoogle Scholar
Clarke, F. W. (1924a). The composition of the river and lake waters of the United States, US Geol. Surv. Prof. Paper 135.
Clarke, F. W. (1924b). The data of geochemistry, US Geo. Surv. Bull. 770.
Clarke, G. K. C., Mathews, W. H. & Pack, R. T. (1984). Outburst floods from Glacial Lake Missoula. Quat. Res., 22, 289–299.CrossRefGoogle Scholar
Claussen, M. & Bolle, H.-J. (2004). The Sahara, in Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System, eds. Kabat, P., Claussen, M. & Dirmeyer, P. A., Berlin: Springer-Verlag, pp. 42–44.Google Scholar
,COHMAP Members (1988). Climatic changes of the last 18000 years: observations and model simulations. Science, 241, 1043–1052.CrossRefGoogle Scholar
Colin, C. et al. (2010). Impact of the East Asian monsoon rainfall changes on the erosion of the Mekong River basin over the past 25,000 yr. Marine Geol., 271, 84–92.CrossRefGoogle Scholar
Colinvaux, P., Oliveira, J. E. & Patino, M. (1999). Amazon Pollen Manual and Atlas/Manual e Atlas Palinologico da Amazonia, Amsterdam: Hardwood Academic Publishing.Google Scholar
Collins, B. D. & Dunne, T. (1986). Erosion of tephra from the 1980 eruption of Mount St. Helens. Geol. Soc. Amer. Bull., 97, 896–905.2.0.CO;2>CrossRefGoogle Scholar
Collins, D. N. (1996). Sediment transport from glacierized basins in the Karakoram mountains. IAHS Publ. 236, 85–96.Google Scholar
Collins, M. B. (1981). Sediment yield studies of headwater catchments in Sussex, S.E. England. Earth Surf. Process. Landforms, 6, 517–539.CrossRefGoogle Scholar
Collins, R. O. (2002). The Nile, Yale University Press.Google Scholar
Colman, S. M. & Bratton, J. F. (2003). Anthropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay. Geology, 31, 71–74.2.0.CO;2>CrossRefGoogle Scholar
Coltorti, M. (1997). Human impact in the Holocene fluvial and coastal evolution of the Marche region, Central Italy. Catena, 30, 311–335.CrossRefGoogle Scholar
Combe, M. (1968). Resources en Eau du Maroc et Pourcetage d'Utilisation Etat des Connaissances, Direction de l'Hydraulique.
Agua, Comision Nacional del (1990). Datos hidrometricos de Mexico, 1937–1985. CD-ROM.
Conley, D. J.et al. (2000). The transport and retention of dissolved silicate by rivers in Sweden and Finland. Limnol. Oceanogr., 45, 1850–1853.CrossRefGoogle Scholar
Cook, E. R.et al. (2004). Long-term aridity changes in the western United States. Science, 306, 1015–1018.CrossRefGoogle ScholarPubMed
Cook, E. R.et al. (2007). North American drought: reconstructions, causes, and consequences. Earth Sci. Rev., 81, 93–134.CrossRefGoogle Scholar
Correggiari, A., Cattaneo, A. & Trincardi, F. (2005). The modern Po Delta system: Lobe switching and asymmetric prodelta growth. Mar. Geol., 222, 49–74.CrossRefGoogle Scholar
Costa, J. E. & Schuster, L. (1988). The formation and failure of natural dams. Geol. Soc. Amer. Bull., 100, 1054–1068.2.3.CO;2>CrossRefGoogle Scholar
Cowan, E. A., Carlson, P. R. & Powell, R. D. (1996). The marine record of the Russell Fiord outburst flood, Alaska, USA. Ann. Glaciol., 22, 194–199.CrossRefGoogle Scholar
Craig, R. G. (1987). Dynamics of a Missoula flood, in Catastrophic Flooding, eds. Mayer, L. & Nash, D., Boston: Allen & Unwin, pp. 305–332.Google Scholar
Crossland, C. J.et al. (eds.) (2005). Coastal Fluxes in the Anthropocene: Heidelberg: Springer-Verlag.CrossRef
Crutzen, P. J. & Stoermer, E. F. (2000). The “Anthropocene”, in IGBP Newsletter, pp. 17–18.Google Scholar
Culp, J. M., Prowse, T. D. & Luiker, E. A. (2005). Mackenzie River Basin, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, 804–850.Google Scholar
Cunjak, R. A. & Newbury, R. W. (2005). Atlantic coast rivers of Canada, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, 938–980.Google Scholar
Curtis, W. F., Culbertson, J. K. & Chase, E. B. (1973). Fluvial-Sediment Discharge to the Oceans from the Conterminous United States, US Geol. Surv. Circular, 17 pp.
Czaya, E. (1981). Rivers of the World, Van Nostrand Reinhold Company.Google Scholar
Dadson, S. J.et al. (2004). Earthquake-generated increase in sediment delivery from an active mountain belt. Geology, 32, 733–736.CrossRefGoogle Scholar
Dadson, S. J.et al. (2005). Hyperpycnal river flows from an active mountain belt. J. Geophys. Res., 110, f04016.CrossRefGoogle Scholar
Dahm, D. H., Edwards, R. J. & Gelwick, F. P. (2005). Gulf Coast rivers of the Southwestern United States, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, 180–228.Google Scholar
Dai, A., Trenberth, K. E. & Qian, T. T. (2004). A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J. Hydromet., 5, 1117–1130.CrossRefGoogle Scholar
Dai, A. G. & Trenberth, K. E. (2002). Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeorol., 3, 660–687.2.0.CO;2>CrossRefGoogle Scholar
Dai, F. C.et al. (2005). The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology, 65, 205–221.CrossRefGoogle Scholar
Dai, S. B., Yang, S. L. & Cai, A. M. (2008). Impacts of dams on the sediment flux of the Pearl River, southern China. Catena, 76, 36–43.CrossRefGoogle Scholar
Dai, S. B., Yang, S. L. & Li, M. (2009). The sharp decrease in suspended sediment supply from China's rivers to the sea: anthropogenic and natural causes. Hydrol. Sci., 54, 135–146.CrossRefGoogle Scholar
Datta, D. K. & Subramanian, V. (1997). Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna river system in the Bengal Basin, Bangladesh and their environmental implications. Environ. Geol., 30, 181–188.CrossRefGoogle Scholar
Dauta, A.et al. (2009). The Adour–Garonne basin, in Rivers of Europe, eds. Tockner, K., Robinson, C. T. & Uehlinger, U., Amsterdam: Elsevier, pp. 182–198.Google Scholar
Bartolo, S. G., Gabriele, S. & Gaudio, R. (2000). Multifractal behaviour of river networks. Hydrol. Earth Syst. Sci., 4, 105–112.CrossRefGoogle Scholar
Vente, J.et al. (2007). The sediment delivery problem revisited. Prog. Phys. Geog., 31, 155–178.CrossRefGoogle Scholar
Villiers, M. (2000). Water: The Fate of Our Most Precious Resource, Boston: Houghton Mifflin Co.Google Scholar
Wit, M. (1999). Modeling nutrient fluxes from source to river load: a macroscopic analysis applied to the Rhine and Elbe basins. Hydrobiologia, 410, 123–130.CrossRefGoogle Scholar
Dearing, J. A. & Jones, R. T. (2003). Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment records. Global Planet. Change, 39, 147–168.CrossRefGoogle Scholar
Dedkov, A. P. & Mozzherin, V. I. (1992). Erosion and sediment yield in mountain regions of the world. IAHS Publ. 209, 29–36.Google Scholar
Degens, E. T. & D. A. Ross (1972). Chronology of the Black Sea over the last 25,000 years. Chem. Geol., 10, 1–16.CrossRef
Degens, E. T., Kempe, S. & Richey, J. E. (eds.) (1991). Biogeo­chemistry of major world rivers, Chichester: John Wiley & Sons.
Dellapenna, J. W. (1996). Rivers as legal structures: the examples of the Jordan and the Nile. Nat. Resour. J., 36, 217–250.Google Scholar
Demissie, M. (1996). Patterns of erosion and sedimentation in the Illinois River basin. IAHS Publ. 236, 483–490.Google Scholar
Depetris, P. J. & Irion, G. (1996). Clay-size mineralogy of the suspend load from two Patagonian rivers: The Negro and The Colorado. Actas del Trigésimo Congreso Geológico Argentino, 3, 275–280.Google Scholar
Depetris, P. J. & Lenardon, A. M. L. (1982). Particulate and dissolved phases in the Parana River. Mitt. Geol. -Palaont. Inst. University of Hamburg, 52, 385–395.Google Scholar
Depetris, P. J. & Paolini, J. E. (1991). Biogeochemical aspects of South American rivers The Parana and the Orinoco, in Biogeochemistry of Major World Rivers, eds. Degens, E. T., Kempe, S. & Richey, J. E., Chinchester: Wiley, pp. 105–126.Google Scholar
Depetris, P. J.et al. (1996). ENSO-controlled flooding in the Parana River (1904–1991). Naturwissenschaften, 83, 127–129.CrossRefGoogle Scholar
Depetris, P. J.et al. (2005). Biogeochemical output and typology of rivers draining Patagonia's Atlantic seaboard. J. Coast. Res., 21, 835–844.CrossRefGoogle Scholar
Déry, S. J. & Wood, E. F. (2004). Teleconnection between the Arctic Oscillation and Hudson Bay river discharge. Geophys. Res. Lett., 31, 18.CrossRefGoogle Scholar
Deser, C. (2000). On the teleconnectivity of the “Arctic Oscillation”. Geophys. Res. Lett., 27, 779–782.CrossRefGoogle Scholar
Deser, C., Phillips, A. S. & Hurrell, J. W. (2004). Pacific interdecadal climate variability: Linkages between the tropics and North Pacific during boreal winter since 1900. J. Climatol., 17, 3109–3124.2.0.CO;2>CrossRefGoogle Scholar
Dettinger, M. D. & Diaz, H. F. (2000). Global characteristics of stream flow seasonality and variability. J. Hydrometeorol., 1, 289–310.2.0.CO;2>CrossRefGoogle Scholar
Deverel, S. J. and Rojstaczer, S. (1996). Subsidence of agricultural lands in the Sacramento–San Joaquin Delta, California: role of aqueous and gaseous carbon fluxes. Water. Reour. Res, 32, 2359–2367.CrossRefGoogle Scholar
Dhanio, L. L.et al. (2008). Changes in sediment discharge after the collapse of Mount Bawakaraeng in south Sulawesi, Indonesia. IAHS Publ. 325, 607–611.Google Scholar
Dietrich, W. E., Day, G. & Parker, G. (1999). The Fly River, Papua New Guinea: inferences about river dynamics, floodplain sedimentation and fate of sediment, in Varieties of Fluvial Form, eds. Miller, A. J. & Gupta, A., Chichester, UK: John Wiley and Sons, pp. 345–376.Google Scholar
Dilley, M. & Heyman, B. N. (1995). ENSO and disaster: droughts, floods and El Nino/Southern Oscillation warm events. Disasters, 19, 181–193.CrossRefGoogle ScholarPubMed
Dinehart, R. L. (1997). Sediment transport at gauging stations near Mount St. Helens, Washington, 1980–90: data collection and analysis, US Geological Survey., 105 pp.
Dixon, T. H.et al. (2006). Subsidence and flooding in New Orleans. Nature, 441, 587–588.CrossRefGoogle ScholarPubMed
Dole, R. & Stabler, H. (1909). Denudation, US Geological Survey Water-Supply Paper 234, pp. 78–93.
Donnelly, J. P.et al. (2005). Catastrophic meltwater discharge down the Hudson Valley: a potential trigger for the Intra-Allerod cold period. Geology, 33, 89–92.CrossRefGoogle Scholar
Dorsey, R. J. (1988). Provenance evolution and unroofing history of a modern arc-continent collision: evidence from petrography of Plio-Pleistocene sandstones, eastern Taiwan. J. Sediment. Petrol., 58, 208–218.Google Scholar
Dosseto, A.et al. (2006). Time scale and conditions of weathering under tropical climate: study of the Amazon basin with U-series. Geochim. Cosmochim. Acta, 70, 71–89.CrossRefGoogle Scholar
Douglas, I. (1967). Man, vegetation, and the sediment yield of rivers. Nature, 215, 925–928.CrossRefGoogle Scholar
Douglas, I. (1968). Erosion in the Sungei Gombak catchment – Selangor Malaysia. J. Tropic. Geog., 26, 1–16.Google Scholar
Douglas, I. (1996). The impact of land-use changes, especially logging, shifting cultivation, mining and urbanization on sediment yields in humid tropical Southeast Asia: a review with special reference to Borneo. IAHS Publ. 236, 463–471.Google Scholar
Douglas, I. & Spencer, T. (1985). Environmental change and tropical geomorphology, Allen & Unwin Australia.Google Scholar
Dowidar, N. M. (1988). Effect of Aswan High Dam on the biological productivity of southeastern Mediterranean, in Natural and Man-made Hazards, eds. El-Sabh, M. E. & Murty, T. S., Dordrecht: D. Reidel, pp. 477–498.Google Scholar
Drago, E. E. & Amsler, M. L. (1988). Suspended sediment at a cross section of the Middle Parana River: concentrations, granulometry and influence of the main tributaries, in Sediment Budgets, IAHS Publ. 174, 381–396.Google Scholar
Drake, D. E., Kolpack, R. & Fischer, P. J. (1972). Sediment transport on Santa Barbara–Oxnard shelf, Santa Barbara Channel, California, in Shelf Sediment Transport: Processes and Pattern, eds. Swift, D. J. P., Duane, D. B. & Pilkey, O. H., Stroudsburg, PA: Dowdon, Hutchinson and Ross, pp. 307–332.Google Scholar
Drenzek, N. J.et al. (2009). A new look at old carbon in active margin sediments. Geology, 37, 239.CrossRefGoogle Scholar
Drever, J. I. (1994). The effect of landplants on weathering rates of silicate minerals. Geochim. Cosmochim. Acta, 58, 2325–2333.CrossRefGoogle Scholar
Duncan, M. J. (1992). Flow regimes of New Zealand rivers, in Waters of New Zealand, ed. Mosley, M. P., NZ Hydrol. Soc., pp. 13–27.Google Scholar
Dunne, T. (1978). Rates of chemical denudation of silicate rocks in tropical catchments. Nature, 274, 244–246.CrossRefGoogle Scholar
Dunne, T. (2001). Problems in measuring and modeling the influence of forest management on hydrologic and geomorphic processes, in Land Use and Watersheds: Human Influence on Hydrology and Geomorpholgy in Urban and Forest Areas, eds. Wigmosta, M. S. & Burges, S. J., Washington, DC: American Geophysical Union, pp. 77–84.
Dunne, T. & Dietrich, W. E. (1980). Experimental study of Horton overland flow on tropical hillslopes. Z. Geomorphol. Suppl., 35, 40–59.Google Scholar
Dunne, T.et al. (1998). Exchanges of sediment between the floodplain and channel of the Amazon River in Brazil. Geol. Soc. Amer. Bull., 110, 450–470.2.3.CO;2>CrossRefGoogle Scholar
Dupré, B.et al. (2003). Rivers, chemical weathering and Earth's climate. C.R. Geosci., 335, 1141–1160.CrossRefGoogle Scholar
Dynesius, M. & Nilsson, C. (1994). Fragmentation and flow regulation of river systems in the northern third of the world. Science, 266, 753–762.CrossRefGoogle Scholar
Dzhamalov, R. G. & Safronova, T. I. (2002). On estimating chemical discharge into the world ocean with groundwater. Water Resour. Res., 29, 680–686.Google Scholar
Dzhaoshvili, W. (1986). River sediments and formation of beaches on Georgia Black Sea shore (in Russian), Tbilisi: Sabchota Sakartvelo (cited in Meybeck and Ragu, 1997).Google Scholar
,ECLAC (1990). Latin America and the Caribbean: Inventory of Water Resources and Their Use, Santiago, Chile: United Nations Economic Commission for Latin America and the Caribbean (ECLAC).Google Scholar
Edmond, J. M. & Huh, Y.-S. (1997). Chemical weathering yields from basement and orogen terrains in hot and cold ­climates, in Tectonic Uplift and Climate Change, ed. Ruddiman, W. F., New York: Plenum Press, pp. 329–351.Google Scholar
Edmond, J. M.et al. (1995). The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil. Geochim. Cosmochim. Acta, 59, 3301–3325.CrossRefGoogle Scholar
Edwards, T. K. & Glysson, G. D. (1999). Field methods for measurement of fluvial sediment, US Geological Survey Techniques of Water-Resource Investigation, Book 3, chapter C2, 118.
Eisma, D., Cadee, G. C. & Laane, R. (1982). Supply of suspended matter and particulate and dissolved organic carbon from the Rhine to the coastal North Sea, in Biogeochemistry of Major World Rivers, SCOPE-42, eds. Degens, E. T., Kempe, S. & Richey, J. E., Chichester: Wiley and Sons, pp. 297–322.Google Scholar
Eisma, D. L., Kalf, L. & Gaast, S. J. (1978). Suspended matter in the Zaire estuary and the adjacent Atlantic Ocean. Neth. J. Sea Res., 12, 382–406.CrossRefGoogle Scholar
Eittreim, S. L., Anima, R. & Stevenson, A. J. (2002). Seafloor geology of the Monterey Bay area continental shelf. Mar. Geol., 181, 3–34.CrossRefGoogle Scholar
Ekholm, P. (1992). Reversibly adsorbed phosphorus in agriculturally loaded rivers in southern Finland. Aqua Fennica, 22, 35–41.
El-Etr, H. A.et al. (1999). Regional study of the drainage basins of Sinai and eastern desert of Egypt, with a preliminary assessment of their flash flood potential. Ann. Geo. Survey Egypt, 22, 335–356.Google Scholar
El-Sayed, R. (1993). The River Nile: Geology, Hydrology and Utilization, Oxford: Pergamon Press.Google Scholar
Eldridge, D. J. (1998). Trampling of microphytic crusts on calcareous soils, and its impact on erosion under rain-impacted flow. Catena, 33, 221–239.CrossRefGoogle Scholar
Emanuel, K. A. (1987). The dependence of hurricane intensity on climate. Nature, 326, 483–485.CrossRefGoogle Scholar
Emanual, K. A. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.Google Scholar
Embrey, S. S. & Frans, L. M. (2003). Surface-water quality of the Skokomish, Nooksack and Green-Duwamish rivers and Thornton Creek, Puget Sound basin, Washington, 1995–1998, USGS Water Res. Invest. Rept. 4190.
Emile-Gray, J.et al. (2007). ENSO as a mediator for the solar influence on climate. Paleoceanogr, 22, PA3210, doi:10.1029/2006PA1304, 2007.Google Scholar
Emiliani, C.et al. (1975). Paleoclimatological analysis of late Quaternary cores from the northeastern Gulf of Mexico. Science, 189, 1083–1088.CrossRefGoogle ScholarPubMed
Environment Canada (1984).
Enzel, Y.et al. (1999). High-resolution Holocene environmental changes in the Thar Desert northwestern India. Science, 284, 125–128.CrossRefGoogle ScholarPubMed
Erlingsson, U. L. F. (2008). A Jokulhlaup from a Laurentian-captured ice shelf to the Gulf of Mexico could have caused the Bølling warming. Geog. Ann. Ser. A Phys. Geog., 90, 125–140.CrossRefGoogle Scholar
Ermini, L. & Casagli, N. (2003). Prediction of the behavior of landslide dams using a geomorphological dimensionless index. Earth Surf. Process. Landforms, 28, 31–47.CrossRefGoogle Scholar
Erskine, W. D. & Warner, R. (1999). Significance of river bank erosion as a sediment source in the altering of flood regimes of south-eastern Australia, in Fluvial Processes and Environmental Change, eds. Brown, A. G. & Quine, T. A., New York: John Wiley and Sons, pp. 139–163.Google Scholar
Esser, G. & Kohlmaier, G. H. (1991). Modeling terrestrial sources of nitrogen, phosphorus, sulfur and organic carbon to rivers, in Biogeochemistry of Major World Rivers, eds. Degens, E. T., S. Kempe & Richey, J. E., Chichester: Wiley, pp. 297–322.Google Scholar
Etchanchu, D. & Probst, J. L. (1988). Evolution of the chemical composition of the Garrone River water during the period 1971–1984. Hydrol. Sci. J., 33, 243–256.CrossRefGoogle Scholar
Eurosion, (2004). Living with coastal erosion in Europe; sediment and space for sustainabliity. Part II: Maps and Statistics, DG Environment EC.Google Scholar
Fairbanks, R. G. (1989). A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637–642.CrossRefGoogle Scholar
Fang, X.et al. (2001). Changes in forest biomass carbon storage in China between 1949–1998. Science, 292, 2320–2322.CrossRef
Fanos, A. M. (1996). The impact of human activities on the erosion and accretion of the Nile delta coast. J. Coast. Res., 11, 821–833.Google Scholar
,FAO (1997). Irrigation potential in Africa: a basin approach, Rome: FAO, Water Resources.
,FAO (1999). State of world's forests, Rome: FAO, Forestry Department.
FAO/AGL (http://www.fao.org/landwater/aglw/sediment/default.asp).
,FAP 24 (1994). Morphological Studies Phase I: Available Data and Characteristics, Government of Bangladesh.
Farnsworth, K. L. & Milliman, J. D. (2003). Effects of climatic and anthropogenic change on small mountainous rivers: the Salinas River example. Global Planet. Change, 39, 53–64.CrossRefGoogle Scholar
Favier, V. et al. (2009). Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile's Norte Chico region (26–32° S). Water Resour. Res., 45, W02424, doi:10.1029/2008WR006802.CrossRefGoogle Scholar
Fekete, B. M., Vörösmarty, C. J. & Grabs, W. (1999). Global, Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances, Koblenz, Germany:WMO-Global Runoff Data Center Report #22.
Fekete, B. M., Vörösmarty, C. & Grabs, W. (2002). High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 1042, doi:10.1029/1999GB001254.CrossRefGoogle Scholar
Fettweis, M., Sas, M. & Monbaliu, J. (1998). Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt estuary, Belgium. Estuar. Coast. Shelf Sci., 47, 21–36.CrossRefGoogle Scholar
Fierro, P., Jr. & Nyer, E. K. (2007). The Water Encyclopedia (3rd edition), Boca Raton, Fla: CRC, Taylor and Francis.CrossRefGoogle Scholar
Finlayson, B. L. & McMahon, T. A. (1988). Australia vs. the world: a comparative analysis of streamflow characteristics, in Fluvial Geomorphology of Australia, ed. Warner, R. F., Sydney: Academic Press, pp. 17–40.Google Scholar
Fisk, H. N. (1947). Fine-grained alluvial deposits and their effects on Mississippi River activity, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, 82 pp.
Florsheim, J. L., Keller, E.A. and Best, D.W. (1991). Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California. Geol. Soc. Amer. Bull., 103, 504–511.2.3.CO;2>CrossRefGoogle Scholar
Foley, J. A.et al. (2002). El Nino-Southern oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochem. Cycles, 16, 1–17.CrossRefGoogle Scholar
Foley, J. A.et al. (2005). Global consequences of land use. Science, 309, 570–574.CrossRef
Forbes, D. L. (1981). Babbage River Delta and lagoon: Hydrology and sedimentology of an Arctic estuarine system, Unpubl. Thesis, University of British Columbia, 554 p.
Foucart, A. & Stanley, D. J. (1989). Late Quaternary paleoclimatic oscillations in east Africa recorded by heavy minerals in the Nile Delta. Nature 229, 44–46.Google Scholar
Fournier, F. (1949). Les factuer climatiques de l'erosion du sol. Assoc. Geog. Francais Bull., 203, 97–103.CrossRefGoogle Scholar
Fournier, F. (1960). Climat et Erosion, Paris: Presses Universitaires de France.Google Scholar
Framji, K. K. & Mahajan, I. K. (1969). Irrigation and Drainage in the World; a Global Review, 2nd edn. Inter­national Commission on Irrigation & Drainage. New Delhi. 2 v.Google Scholar
Francou, J. & Rodier, J. (1967). Essai de classification des crues maximales observées dans le monde. Cah. ORSTOM, sér. Hydrol, IV.Google Scholar
Frangipane, A. & Paris, E. (1994). Long-term variability of sediment transport in the Ombrone River Basin (Italy). IAHS Publ. 224, 317–324.Google Scholar
Fraser, A. S., Meybeck, M. & Ongley, E. D. (1995). Global Environment Monitoring System (GEMS): Water Quality of World River Basins, UNEP Environment Library.Google Scholar
Frihy, O. E., Debes, E. A. & Sayed, W. R. El (2003). Processes reshaping the Nile delta promontories of Egypt: pre-and post-protection. Geomorph., 53, 263–279.CrossRefGoogle Scholar
Fu, C. B. & Yuan, H. L. (2001). A virtual numerical experiment to understand the impacts of recovering natural vegetation on summer climate and environmental conditions in East Asia. Chin. Sci. Bull., 46, 1199–1203.CrossRefGoogle Scholar
Fuggle, R. & Smith, W. T. (2000). Experience with Dams in Water and Energy Resource Development in the People's Republic of China, World Comm. Dams Country Review Paper.
Fuller, C. C.et al. (1990). Distribution and transport of sediment-bound metal contaminants in the Río Grande de Tárcoles, Costa Rica (Central America). Water Res., 24, 805–812.CrossRefGoogle Scholar
Fuller, C. W.et al. (2003). Erosion rates for Taiwan mountain basins: new determinations from suspended sediment records and a stochastic model of their temporal variation. J. Geol., 111, 71–87.CrossRefGoogle Scholar
Furuichi, T., Win, Z. & Wasson, R. J. (2009). Discharge and suspended sediment transport in the Ayeyarwady River, Myanmar: centennial and decadal changes. Hydrol. Process., 23, 1631–1641.CrossRefGoogle Scholar
Gabet, E. J. & Mudd, S. M. (2009). A theoretical model coupling chemical weathering rates with denudation rates. Geology, 37, 151.CrossRefGoogle Scholar
Gac, J. Y. & Kane, A. (1986). Le fleuve Sénégal: II. Flux continentaux de matières dissoutes à l'embouchure. Sciences Géol. Bull., 39, 151–172.Google Scholar
Gagan, M. K.et al. (2004). Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern Oscillation. Quat. Int., 118/119, 127–143.CrossRefGoogle Scholar
Gaillardet, J.et al. (1997). Chemical and physical denudation in the Amazon River Basin. Chem. Geol., 142, 141–173.CrossRefGoogle Scholar
Gaillardet, J.et al. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol., 159, 3–30.CrossRefGoogle Scholar
Galewsky, J.et al. (2006). Tropical cyclone triggering of sediment discharge in Taiwan. J. Geophys. Res., 11 doi:10.1029/2005JF000428.Google Scholar
Galster, J. C.et al. (2006). Effects of urbanization on watershed hydrology: the scaling of discharge with drainage area. Geology, 34, 713.CrossRefGoogle Scholar
Galy, A. & France-Lanord, C. (2001). Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geol. Soc. Amer. Bull., 29, 23–26.Google Scholar
Gamage, N. and Smakhtin, V. (2009). Do river deltas in east India retreat? A case of the Krishna Delta. Geomorph. 108, 533–540.Google Scholar
Garbarino, J. R.et al. (1995). Heavy metals in the Mississippi River. US Geol. Surv. Circular 1133, pp. 53–72.Google Scholar
Garcia-Ruiz, J. M. (2010). The effects of land uses on soil erosion in Spain: a review. Catena, 81, 1–11.CrossRefGoogle Scholar
Gasse, F. (2000). Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev., 19, 189–211.CrossRefGoogle Scholar
Gay, G. R.et al. (1998). Evolution of cutoffs across meander necks in Powder River, Montana, USA. Earth Surf. Process. Landforms, 23.3.0.CO;2-V>CrossRefGoogle Scholar
Ge, S.-M.et al. (2009). Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake? Geophys. Res. Lett., 36, L20315, doi:10.1029/2009GL040349.CrossRef
,GEMS (1983). GEMS/WATER Data Summary, Burlington, Ontario: WHO Collaborating Centre for Inland Waters.
Gerten, D.et al. (2008). Causes of change in 20th century global river discharge. Geophys. Res. Lett., 35, L20405.CrossRefGoogle Scholar
Gibbs, R. (1967). The geochemistry of the Amazon River system. Part 1. The factors that control the salinity and composition and concentration of the suspended solids. Geol. Soc. Amer. Bull., 78, 1203–1232.CrossRefGoogle Scholar
Gilbert, G. K. (1917). Hydraulic-mining debris in the Sierra Nevada: US, US Geological Survey Prof. Paper 105, 154 pp.
Gillett, N. P., Kell, T. D. & Jones, P. D. (2006). Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett., 33, L23704.CrossRefGoogle Scholar
Gilluly, J. (1955). Geologic contrasts between continents and ocean basins. Geol. Soc. Amer. Spec. Paper, 62, 7–18.CrossRefGoogle Scholar
Giresse, P. A., Wiewiora, A. & Lacka, B. (1998). Processes of Holocene Ferromanganese-coated grains in the nearshore shelf of Cameroon. J. Sediment. Res., 68, 20–36.CrossRefGoogle Scholar
Gleick, P. H. (1993). Water in Crisis, Oxford: Oxford University Press.Google Scholar
Gleick. P. H. (1999). The World's Water, 1998/99, Island Press, Washington D.C., 307pp.
Gleick, P. H. (2000a). The changing water paradigm. A look at twenty-first century water resources development. Water Int., 25, 127–138.CrossRefGoogle Scholar
Gleick, P. H. (2000b). The World's Water. 2000–2001, Washington, DC: Island Press.Google Scholar
Gleick, P. H. (ed.) (2002). The World's Water 2002–2003: The Biennial Report on Freshwater Resources, Washington, DC: Island Press.
Gleick, P. H.et al. (2000). Water: The Potential Consequences of Climate Variability and Change. A Report of the National Water Assessment Group, US Global Change Research Program, US Geol. Surv. and Pac. Inst. Stud. in Devel., Environ., Secur., Oakland, California.Google Scholar
Gleick, P. H.et al. (2006). The World's Water, 2006–2007, Island Press, Washington D.C., 368pp.
Goldenberg, S. B.et al. (2001). The recent increase in Atlantic hurreane activity: causes and implications. Science, 293, 474–479.CrossRef
Goldsmith, S. T.et al. (2008). Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology, 36, 483–486.CrossRefGoogle Scholar
Golosov, V. N.et al. (2008). Response of a small arable catchment sediment budget to introduction of soil conservation measures. IAHS Publ. 425, 106–113.Google Scholar
Gong, G.-Y. & Xu, J.-X. (1987). Environmental effects of human activities on rivers in the Huanghe-Huaihe-Haihe plain, China. Geogr. Ann., 69, 181–188.Google Scholar
Gonzalez-Hidalgo, J. C.et al. (2009). Contribution of the largest events to suspended sediment transport across the USA. Land Degrad. Develop., doi: 10.1002/ldr.897.CrossRef
Gonzalez-Hidalgo, J. C. and Peña-Monné, J. L. (2007). A review of daily erosion in Western Mediterranean areas. Catena, 71, 193–199.CrossRefGoogle Scholar
Goodbred, S. L. (2003). Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade. Sediment. Geol., 162, 83–104.CrossRefGoogle Scholar
Goodbred, S. L., Jr. & Kuehl, S. A. (1998). Floodplain processes in the Bengal Basin and the storage of Ganges-Brahmaputra River sediment; an accretion study using 137Cs and 210Pb geochronology. Sediment. Geol., 121, 239–258.CrossRefGoogle Scholar
Goodbred, S. L., Jr. & Kuehl, S. A. (2000). The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sediment. Geol., 133, 227–248.CrossRefGoogle Scholar
Goolsby, D. A. (1994). Flux of herbicdes and nitrate from the Mississippi River to the Gulf of Mexico, in Coastal Oceanographic Effects of Summer 1993 Mississippi River Flooiding, ed. Dowigiallo, M. J., US National Oceanic and Atmospheric Administration, Special NOAA Report, 77 pp.Google Scholar
Goolsby, D. A. & Battaglin, W. A. (2001). Long-term changes in concentrations and flux of nitrogen in the Mississippi River Basin, USA. Hydrol. Process., 15, 1209–1226.CrossRefGoogle Scholar
Goolsby, D. A. & Pereira, W. E. (1996). Pesticides in the Mississippi river. US Geol. Surv. Circular 1133, 87–102.Google Scholar
Goolsby, D. A.et al. (1999). Flux and sources of nutrients in the Mississippi-Atchafalaya River Basin: Topic 3 report for the integrated assessment on hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 17, US Department of Commerce, National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Silver Spring, Maryland, p. 130.
Gordeev, V. V. (2000). River input of water, sediment, major ions, nutrients and trace metals from Russian territory to the Arctic Ocean, in The Freshwater Budget of the Arctic Ocean, ed. Lewis, E. L., Dordrecht: Kluwer Academic Publishing, pp. 297–322.Google Scholar
Gordeev, V. V. (2006). Fluvial sediment flux to the Arctic Ocean. Geomorph., 80, 94–104.CrossRefGoogle Scholar
Gordeev, V. V. & Sidorov, I. S. (1993). Concentrations of major elements and their outflow into the Laptev Sea by the Lena River. Marine Geochem., 43, 33–45.Google Scholar
Gordeev, V. V.et al. (1996). A reassessment of the Eurasian River input of water, sediment, major ions and nutrients to the Arctic Ocean. Amer. J. Sci., 296, 664–691.CrossRefGoogle Scholar
Gordon, R. (1885). The Irawadi River. Royal Geogr. Soc. Proc, 7, 292–331.CrossRefGoogle Scholar
Gorg, S. K. (1999). River Water Disputes in India. Laxmi Publ., New Delhi, 132pp.Google Scholar
Gorsline, D. S. (1996). Depositional events in Santa Monica Basin, California Borderland, over the past five centuries. Sediment. Geol., 104, 73–88.CrossRefGoogle Scholar
Goudie, A. (2000). The Human Impact on the Natural Environment, MIT Press, Cambridge, MA, p. 511.Google Scholar
Goudie, A. S. (2006). Global warming and fluvial geomorphalogy. Geomorph., 79, 384–394.CrossRefGoogle Scholar
Graf, W. L. (1999). Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Water Resour. Res., 35, 1305–1311.CrossRefGoogle Scholar
Graf, W. L. (2006). Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorph., 79, 336–360.CrossRefGoogle Scholar
,GRDC (1995). First Interim Report on the Arctic River Database for the Arctic Climate System Study, Koblenz, Germany: Federal Institute of Hydrology.
Green, W. J.et al. (2005). Geochemical proceses in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals. Geochim. Cosmochim. Acta, 69, 839–850.CrossRefGoogle Scholar
Greene, R. S. B., Chartres, C. J. & Hodgkinson, K. C. (1990). The effects of fire on the soil in a degraded semi-arid woodland 1. Cryptogam cover and physical and micromorphological properties. Aust. J. Soil Res., 28, 755–777.CrossRefGoogle Scholar
Gresswell, R. K. & Huxley, A. (eds.) (1966). Standard Encyclopedia of the World's Rivers and Lakes, New York: G. P. Putnam's Sons.
Griffiths, G. A. (1981). Some suspended sediment yields from south island catchments, New Zealand. Water Resour. Bull., 17, 662–671.CrossRefGoogle Scholar
Griffiths, G. A. (1982). Spatial and temporal variability in suspended sediment yields of North Island basins, New Zealand. Water Resour. Bull., 18, 575–584.CrossRefGoogle Scholar
Griffiths, G. A. & Glasby, G. P. (1985). Input of river-derived sediment to the New Zealand continental shelf: I. Mass. Estuar. Coast. Shelf Sci., 21, 773–787.CrossRefGoogle Scholar
Griggs, G. B.et al. (1970). Deep-sea gravel from Cascadia Channel. J. Geology 78, 611–619.CrossRefGoogle Scholar
Grove, A. T. & Rackham, O. (2001). The nature of Mediterranean Europe. An Ecological History, New Haven: Yale University Press.Google Scholar
Gudmundsson, M. T., Sigmundsson, F. & Bj, H.örnsson (1997). Ice-volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature, 389, 954–957.CrossRefGoogle Scholar
Guillén, J. & Palanques, A. (1997). A historical perspective of the morphological evolution in the lower Ebro river. Environ. Geol., 30, 174–180.Google Scholar
Guillén, J.et al. (2006). Sediment dynamics during wet and dry storm events on the Têt inner shelf (SW Gulf of Lions). Mar. Geol., 234, 129–143.CrossRefGoogle Scholar
Gumiero, B.et al. (2009). The Italian Rivers, in Rivers of Europe, eds. Tockner, K., Robinson, C. T. & Uehlinger, U., Amsterdam: Elsevier, pp. 467–496.Google Scholar
Gunnell, Y. (1998). Present, past and potential denudation rates: is there a link? Tentative evidence from fission-track data, river sediment loads and terrain analyses in south Indian shield. Geomorph., 25, 135–153.CrossRefGoogle Scholar
Gupta, A. (1988). Large floods as geomorphic events in the humid tropics, in Flood Geomorphology, eds. Baker, V. R., Kochel, R. C. & Patton, P. C., Chichester: John Wiley & Sons, pp. 301–315.Google Scholar
Gupta, A., Kale, V. S. & Rajaguru, S. N. (1999). The Narmanda River, India, through space and time, in Varieties of Fluvial Form, eds. Miller, A. J. & Gupta, A., Chichester: John Wiley & Sons, pp. 113–143.Google Scholar
Gupta, H. & Chakrapani, G. J. (2005). Temporal and spatial variations in water flow and sediment load in Narmada River Basin, India: natural and man-made factors. Environ. Geol., 48, 579–589.CrossRefGoogle Scholar
Gurnell, A., Hannah, D. & Lawler, D. (1996). Suspended sediment yield from glacier basins. IAHS Publ. 236, 97–104.Google Scholar
Gutierrez, F. & Dracup, J. A. (2001). An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Niño–Southern Oscillation indicators. J. Hydrol., 246, 181–196.CrossRefGoogle Scholar
Guyot, J. L.et al. (1996). Dissolved solids and suspended sediment yields in the Rio Maderia basin from the Bolivian Andes to the Amazon. IAHS Publ. 236, 55–63.Google Scholar
Habidin, A. (2005). Land subsidence in urban areas of Indonesia. GIM International, 19.
Haines, A. T., Finlayson, B. L. & McMahon, T. A. (1988). A global classification of river regimes. Appl. Geog., 8, 255–272.CrossRefGoogle Scholar
Hales, T. C. & Roering, J. J. (2009). A frost “buzzsaw” mechanism for erosion of the eastern Southern Alps, New Zealand. Geomorph., 107, 241–253.CrossRefGoogle Scholar
Hallet, B., Hunter, L. & Bogen, J. (1996). Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global Planet. Change, 12, 213–235.CrossRefGoogle Scholar
Han, Z. (2003). Groundwater resources protection and aquifer recovery in China. Environ. Geol., 44, 106–111.Google Scholar
Hanna, E. J.et al. (2009). Hydrologic response of the Greenland ice sheet: the role of oceanographic warming. Hydrol. Process., 23, 7–30.CrossRefGoogle Scholar
Hanninen, J., Vuorinen, I. & Hjelt, P. (2000). Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol. Oceanogr., 703–710.CrossRefGoogle Scholar
Harden, D. R. (1995). A comparison of flood-producing storms and their impacts in northwestern California. U.S. Geological Survey Professional Paper 1454, D1–D9.Google Scholar
Hare, S. R. (1996). Low frequency climate variability and salmon production, Unpublished PhD Thesis, University Washington.
Harr, R. D.et al. (1975) Changes in storm hydrographs after road building and clear-cutting in the Oregon Coast Range. Water Resour. Res., 11, 436–444.CrossRefGoogle Scholar
Harris, P. T. (1991). Sedimentation at the junction of the Fly River in the northern Great Barrier Reef, in Sustainable Development for Traditional Inhabitants of the Torres Strait Region, eds. Lawrence, D. & Cansvield-Smith, T., Townsville: Great Barrier Reef Marine Park Authority, pp. 59–85.Google Scholar
Harrison, C. G. A. (1994). Rates of continental erosion and mountain building. Geol. Rundsch., 83, 431–447.Google Scholar
Harrison, C. G. A. (2000). What factors control mechanical erosion rates?Int. J. Earth Sci., 88, 752–763.CrossRefGoogle Scholar
Hartmann, J. N.et al. (2007). High riverine fluxes of dissolved silica from Japan: the influence of lithology. Geophys. Res. Abs., EGU General Assembly 2008, 9, 00861.Google Scholar
Hartshorn, K.et al. (2002). Climate-driven bedrock incision in an active mountain belt. Science, 297, 2036–2038.CrossRefGoogle Scholar
Hasholt, B. (1996). Sediment transport in Greenland. IAHS Publ. 236, 105–114.Google Scholar
Haston, L. & Michaelsen, J. (1994). Long-term central coastal California precipitation variability and relationships to El Niño-Southern Oscillation. J. Climate., 7, 1373–1387.2.0.CO;2>CrossRefGoogle Scholar
Hawdon, A. A.et al. (2008). Hydrological recovery of rangeland following cattle exclusion. IAHS Publ. 325, 532–539.Google Scholar
Hay, B. J. (1994). Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction. Environ. Geol., 23, 276–283.Google Scholar
Hay, W. W., Sloan, J. L. & Wold, C. N. (1988). Mass/age distribution and the global rate of sediment subduction. J. Geophys. Res., 93, 14 933–14 940.CrossRefGoogle Scholar
Hayes, S. K. (1999). Low-flow sediment transport on the Pasig–Potrero alluvial fan, Mount Pinatubo, Philippines, Unpublished MSc Thesis, University of Washington, 73 pp.
Helama, S., Merilainen, J. & Tuomenvirta, H. (2009). Multicentennial megadrought in northern Europe coincided with a global El Nino-Southern Oscillation drought pattern during the Medieval Climate Anomaly. Geology, 37, 175.CrossRefGoogle Scholar
Herbert, T. D.et al. (2001). Collapse of the California current during glacial maxima linked to climate change on land. Science, 293, 71–76.CrossRefGoogle ScholarPubMed
Herschy, R. (2003). World catalog of maximum observed floods. IAHS Publ. 284, 285.Google Scholar
Herschy, R. W. & Fairbridge, R. W. (1998). Encyclopedia of ­hydrology and water resources, Kluwer Academic Publishers.Google Scholar
Hettler, J., Irion, G. & Lehmann, B. (1997). Environmental impact of mining waste disposal on a tropical lowland river system: a case study on the Ok Tedi Mine, Papua New Guinea. Mineral. Deposita, 32, 280–291.CrossRefGoogle Scholar
Heusch, B. & Milles-Lacroix, A. (1971). Une method pour estimer l'ecoulement et l'erosion dans un bassin, Application au Magreb. Mines et Geologie, 33, 21–39.Google Scholar
Hewawasam, T.et al. (2003). Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology, 31, 597–600.2.0.CO;2>CrossRefGoogle Scholar
Heyns, P. (2003). Water-resources management in Southern Africa, in International Waters in Southern Africa, ed. Nakayama, M., Tokyo: UN Press, p. 318.Google Scholar
Hickin, E. J. (1989). Contemporary Squamish River sediment flux to Howe Sound, British Columbia. Can. J. Earth Sci., 26, 1953–1963.CrossRefGoogle Scholar
Hicks, D. M. & Basher, L. R. (2008). The signature of an extreme erosion event on suspended sediment loads: Motueka River catchment, South Island, New Zealand. IAHS Publ. 325, 184–191.Google Scholar
Hicks, D. M., Gomez, B. & Trustrum, N. A. (2000). Erosion thresholds and suspended sediment yields, Waipaoa River basin, New Zealand. Water Resour. Res., 36, 1129–1142.CrossRefGoogle Scholar
Hicks, D. M., Gomez, B. & Trustrum, N. A. (2004). Event suspended sediment characteristics and the generation of hyperpycnal plumes at river mouths: East Coast continental margin, North Island, New Zealand. J. Geol., 112, 471–485.CrossRefGoogle Scholar
Hicks, D. M., Hill, J. & Shankar, U. (1996). Variation of suspended sediment yields around New Zealand: the relative importance of rainfall and geology. IAHS Publ. 236, 149–156.Google Scholar
Hicks, D. M. & Shankar, U. (2003). Sediment from New Zealand rivers, NIWA Chart Misc. Series No. 79.
Hillel, D. (1994). Rivers of Eden : The Struggle for Water and the Quest for Peace in the Middle East, Oxford: Oxford University Press.Google Scholar
Hilton, R. G. et al. (2008). Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nature Geoscience, 1, 759–762.CrossRefGoogle Scholar
Hirabayashi, Y. et al. (2008). Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci., 53, 754–772.CrossRefGoogle Scholar
Hirsch, R. M.et al. (1990). The influence of man on hydrologic systems, in The Geology of North America: Surface Water Hydrology, eds. Wolman, M. G. & Riggs, H. C., Boulder, Colorado: Geol. Soc. Amer., O-1, pp. 329–359.Google Scholar
Hiscott, R. N. (2001). Depositional sequences controlled by high rates of sediment supply, sea-level variations, and growth faulting: the Quaternary Baram Delta of northwestern Borneo. Mar. Geol., 175, 67–102.CrossRefGoogle Scholar
Hodgkins, G. A. (2009). Streamflow changes in Alaska between the cool phase (1947–1976) and the warm phase (1977–2006) of the Pacific Decadal Oscillation: The influence of glaciers. Water Resour. Res., 45, W06502, doi:10.1029/2008WR007575.CrossRefGoogle Scholar
Hodson, A.et al. (1998). Suspended sediment yield and transfer processes in a small High-Arctic glacier basin, Svalbard. Hydrol. Process., 12, 73–86.3.0.CO;2-S>CrossRefGoogle Scholar
Hoelzmann, P.et al. (1998). Mid-Holocene land-surface conditions in northern Africa and the Arabian peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Global Biogeochem. Cycles, 12, 35–51.CrossRefGoogle Scholar
Hogan, D. L. & Schwab, J. W. (1991). Meteorological conditions associated with hillslope failures on the Queen Charlotte Islands, B.C. Ministry of Forests, Land Management Report 73, p. 36.
Holdgate, M.et al. (1982). The world environment 1972–1982: a report, in Natural Resources and the Environment Series-United Nations Environment Programme (Irlanda)Dublin.Google Scholar
Holeman, J. N. (1968). Sediment yield of major rivers of the world. Water Resour. Res., 4, 737–747.CrossRefGoogle Scholar
Holeman, J. N. (1980). Erosion rates in the US estimated by the Soil Conservation Service's inventory (abs). EOS, 61, 954.Google Scholar
Holland, H. D. (1978). The Geochemistry of the Atmosphere and Oceans, New York: Wiley-Interscience.Google Scholar
Hollerwoger, F. (1964). The progress of the river deltas in Java, in Scientific problem of the humid tropic zone deltas and their implications. UNESCO, pp. 347–355.Google Scholar
Holmes, R. M.et al. (2000). Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes?Water Resour. Res., 36, 2309–2320.CrossRefGoogle Scholar
Holmes, R. M.et al. (2001). Nutrient chemistry of the Ob' and Yenisey rivers, Siberia: results from June 2000 expedition and evaluation of long-term data sets. Mar. Chem., 75, 219–227.CrossRefGoogle Scholar
Holmes, R. M.et al. (2002). A circumpolar perspective on fluvial sediment flux to the Arctic Ocean. Global Biogeochem. Cycles, 16, 1098, doi:10.1029/2001GB001849.CrossRefGoogle Scholar
Hong, G. H.et al. (1997). 210Pb-derived sediment accumulation rates in the southwestern East Sea (Sea of Japan). Geo-Mar. Lett., 17, 126–132.CrossRefGoogle Scholar
Hooke, J. M. (2006). Human impacts on fluvial systems in the Mediterranean region. Geomorph., 79, 311–335.CrossRefGoogle Scholar
Hooke, R. L. B. (2000). Toward a uniform theory of clastic sediment yield in fluvial systems. Geol. Soc. Amer. Bull., 112, 1778.2.0.CO;2>CrossRefGoogle Scholar
Horowitz, A. J. (2010). A quarter century of declining suspended sediment fluxes in the Mississippi River and the effect of the 1993 flood. Hydrol. Process., 24, 13–34.Google Scholar
Hossain, M. M. (1991). Total sediment load in the lower Ganges and Jumuna, Bangladesh. University of Engineering and Technology, 15 pp.
Hossain, F.et al. (2009). Have large dams altered extreme precipitation patterns?EOS 90, 453–454.CrossRefGoogle Scholar
Hovius, N. (1988). Control on sediment supply by large ­rivers, in Relative Role of Eustacy, Climate and Tectonism in Continental Rocks. SEPM Special Publ. 59, eds. Shanley, K. W. & McCabe, P. J., pp. 3–16.
Hovius, N. & Leeder, M. (1998). Clastic sediment supply to basins. Basin Res., 10, 1–5.CrossRefGoogle Scholar
Hovius, N., Stark, C. P. & Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide mapping. Geology, 25, 231–234.2.3.CO;2>CrossRefGoogle Scholar
Hovius, N.et al. (2000). Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. J. Geol., 108, 73–89.CrossRefGoogle Scholar
Howell, P. P. & Allan, J. A. (1994). The Nile: Sharing a Scarce Resource, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hren, M. T.et al. (2007). Major ion chemistry of the Yarlung Tsangpo–Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochim. Cosmochim. Acta, 71, 2907–2935.CrossRefGoogle Scholar
Hrieche, A., Najem, W. & Bocquillon, C. (2007). Hydrological impact simulations of climate change on Lebanese coastal rivers. IAHS Publ. 52, 1119–1133.Google Scholar
Huang, M., Zhang, L. & Gallichand, J. (2003). Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol. Process., 17, 2599–2609.CrossRefGoogle Scholar
Huber, A., A. Iroumé & J. Bathurst (2008). Effect of Pinus ­radiata plantations on water balance in Chile. Hydrol. Proc., 22, 142–148.CrossRef
Hudson, P. F. (2003). Event sequence and sediment exhaustion in the lower Panuco Basin, Mexico. Catena, 52, 57–76.CrossRefGoogle Scholar
Hudson, P. F. & Mossa, J. (1997). Suspended sediment transport effectiveness of three large impounded rivers, US Gulf Coastal Plain. Environ. Geol., 32, 263–273.CrossRefGoogle Scholar
Hudson, P. F.et al. (2005). Rivers of Mexico, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 1030–1084.Google Scholar
Hughes, P. J., Sullivan, M. E. & Yok, D. (1991). Human-induced erosion in a highlands catchment in Papua New Guinea: the prehistoric and contemporary records. Z. Geomorphol. Suppl., 83, 227–239.Google Scholar
Hugueny, B. & Lévêque, C. (1994). Freshwater fish zoogeography in West Africa: faunal similarities between river basins. Environ. Biol. Fish., 39, 365–380.CrossRefGoogle Scholar
Huh, Y.-S. (2003). Chemical weathering and climate – a global experiment. A review. Geoscience Journal (Korea), 7, 277–288.CrossRefGoogle Scholar
Huh, Y.et al. (1998). The fluvial geochemistry of the rivers of eastern Siberia. II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochim. Cosmochim. Acta, 62, 2053–2075.CrossRefGoogle Scholar
Humborg, C.et al. (1997). Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386, 385–388.CrossRefGoogle Scholar
Humborg, C.et al. (2000). Silica retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio, 29, 45–50.CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676–679.CrossRefGoogle ScholarPubMed
Hurrell, J. W.et al. (eds.) (2003). The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Amer. Geophys. Union Geophys. Monograph 134.CrossRef
,IAHS/UNESCO (1974). Gross sediment transport into the oceans, preliminary edition, UNESCO, 4 pp.
Imram, J. & Syvitski, J. P. M. (2000). Impact of extreme river events on the coastal ocean. Oceanography, 13, 85–92.CrossRefGoogle Scholar
Inbar, M. (1992). Rates of fluvial erosion in basins with a Mediterranean type climate. Catena, 19, 383–409.CrossRefGoogle Scholar
Inbar, M., Tamir, M. & Wittenberg, L. (1998). Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorph., 24, 17–33.CrossRefGoogle Scholar
Inman, D. L. & Jenkins, S. A. (1999). Climate change and the episodicity of sediment flux of small California rivers. J. Geol., 107, 251–270.CrossRefGoogle Scholar
Inman, D. L. & Nordstrom, C. E. (1971). On the tectonic and morphologic classification of coasts. J. Geol., 79, 1–21.CrossRefGoogle Scholar
Inman, D. L., Jenkins, S. & Wasyl, J. (1998). Database for streamflow and sediment flux of California rivers, University of California San Diego, Scripps Inst. Oceangr. Ref. 98–9, 13 pp.
Instituto Geografico Nacional Mapa de Cuencas de Guatemala.
,IOC/WESTPAC (1991). Workshop on River Input of Nutrients to the Marine Environment in the Western Pacific, Intergovernmental Oceanographic Commission.Google Scholar
Isdale, P.et al. (1998). Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia. Holocene, 8, 1–8.CrossRefGoogle Scholar
Isik, S.et al. (2008). Effects of anthropogenic activities on the lower Sakarya River. Catena, 75, 172–181.CrossRefGoogle Scholar
Ismail, W. R. (1996). The role of tropical storms in the catchment sediment removal. J. Bioscience, 7, 153–168.Google Scholar
Issar, A. (2003). Climate Changes during the Holocene and their Impact on Hydrological Systems, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Issar, A. S. & Brown, N. (eds.) (1998). Water, Environment and Society in Times of Climatic Change, Dordrecht: Kluwer Academic.CrossRef
Istanbulluoglu, E. & Bras, R. L. (2006). On the dynamics of soil moisture, vegetation, and erosion: Implications of climate variability and change. Water Resour. Res., 42 doi:10.1029/20005WR004113.CrossRefGoogle Scholar
Itambi, A. C.et al. (2009). Millennial-scale northwest African droughts related to Heinrich events and Dansgaard–Oeschger cycles: evidence in marine sediments from offshore Senegal. Paleoceanogr., 24, doi:10.1029/ 2007PA001570.CrossRefGoogle Scholar
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resour. Res., 36, 1897–1910.CrossRefGoogle Scholar
Jackson, J. K.et al. (2005). Atlantic coast rivers of the northeastern United States, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 20–71.Google Scholar
Jackson, M. & J. J. Roering (2009). Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA. Quat. Sci. Rev., 28, 1131–1146.CrossRef
Jacobson, P. J.et al. (1999). Transport, retention, and ecological significance of woody debris within a large ephemeral river. J. N. Amer. Benthol. Soc., 18, 429–444.CrossRefGoogle Scholar
Jacobson, A. D.et al. (2003). Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochim. Cosmochim. Acta, 67, 29–46.CrossRefGoogle Scholar
Jaeschke, A.et al. (2007). Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanogr., 22, PA4206, doi:10.1029/2006PA001391.CrossRefGoogle Scholar
Jaffe, R.et al. (1995). Pollution effects of the Tuy River on the central Venezuelan coast: anthropogenic organic compounds and heavy metals inTivela mactroidea. Mar. Pollut. Bull., 30, 820–825.Google Scholar
Jain, S. K., Agarwal, P. K. & Singh, V. P. (2007). Hydrology and Water Resources of India, Heidelberg: Springer-Verlag.Google Scholar
James, L. A. (1994). Channel changes wrought by gold mining: Northern Sierra Nevada, California, in Effects of Human-Induced Changes on Hydrologic Systems, eds. Marston, R. & Hasfurther, V. R., Amer. Water Resour. Assoc., pp. 629–638.Google Scholar
Janda, R. J. & Nolan, K. M. (1979). Stream sediment discharge in northwestern California, in A Fieldtrip to Observe Natural and Management Related Erosion in Franciscan Terrain of Northern California; a Guidebook. Boulder, CO: Geol. Soc. America, Cordillerian Section, pp. 1–27.Google Scholar
Janda, R. J.et al. (1981). Lahar movement, effects and deposits. US Geological Survey Prof. Paper 1250, 461–478.Google Scholar
Janda, R. J.et al. (1996). Assessment and response to lahar hazard around Mount Pinatubo, 1991 to 1993, in Fire and Mud, Eruptions and Lahars of Mount Pinatubo, Philippines, eds. Newhall, C. G. & Punongbayan, R. S., Seattle: University of Washington Press, pp. 107–139.Google Scholar
Jansen, I. M. L. & Painter, R. B. (1974). Predicting sediment yield from climate and topography. J. Hydrol., 21, 371–380.CrossRefGoogle Scholar
Jansen, P.et al. (1979). Principles of River Engineering, London: Pitman.Google Scholar
Jansson, M. B. (1988). A global survey of sediment yield. Geogr. Ann., 70, 81–98.CrossRefGoogle Scholar
Jansson, R.et al. (2000). Effects of river regulation on river-margin vegetation: a comparison of eight boreal rivers. Ecol. Appl., 10, 203–224.CrossRefGoogle Scholar
Jaoshvili, S. (2002). The rivers of the Black Sea. European Environmental Commission Technical Report 71, 58.
Jarrett, R. D. & Costa, J. E. (1986). Hydrology, geomorphology and dam-break modeling of the July 15, 1982 Lawn Lake Dam and Cascade Lake Dam failures, Larimer Country, Colorado, US Geol. Surv. Prof. Paper 1369, 78 pp.Google Scholar
Jayawardena, A. W., Takeuchi, K. & Machubub, B. (eds.) (1997). Catalogue of Rivers for Southeast Asia and The Pacific, Vol. 2, The UNESCO-IHP Regional Steering Committee (RSC) for Southeast Asia and the Pacific.
Jennerjahn, T. C. et al. (2010). The tropical Brazilian continental margin. In K. K. liu et al. (eds.), Carbon and Nutrient Fluxes in Continental Margins. IGBP Series, Springer-Verlag, Berlin, pp. 427–442.
Jobin, W. R. (1999). Dams and Disease: Ecological Design and Health Impacts of Large Dams, Canals, and Irrigation Systems, London: Taylor & Francis.CrossRefGoogle Scholar
Johnson, H. M., IV & Belval, D. L. (1998). Nutrient and suspended solid loads, yields and trends in the non-tidal part of five major river basins in Virginia, 1985–96, Richmond, VA. US Geol. Surv. Open-File Report, 36 pp.
Johnsson, M. J. & Meade, R. H. (1990). Chemical weathering of fluvial sediments during alluvial storage; the Macuapanim Island point bar, Solimoes River, Brazil. J. Sediment. Petrol., 60, 827–842.Google Scholar
Johnsson, M. J., Stallard, R. F. & Lundberg, N. (1991). Controls on the composition of fluvial sands from a tropical weathering environment: sands of the Orinoco River drainage basin, Venezuela and Colombia. Geol. Soc. Amer. Bull., 103, 1622.2.3.CO;2>CrossRefGoogle Scholar
Jones, B. G., Woodroffe, C. D. & Martin, G. R. (2003). Deltas in the Gulf of Carpentaria, Australia: Forms, Processes and Products, in Tropical Deltas of Southeast Asia - Sedimentology, Stratigraphy, and Petroleum Geology, eds. Sidi, F. H.et al., Tulsa, OK: SEPM, 21–43.Google Scholar
Jones, J. A. (2000). Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, western Cascades, Oregon. Water Resour. Res., 36, 2621–2642.CrossRefGoogle Scholar
Jones, P. D., Jonsson, T. & Wheeler, D. (1997). Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol., 17, 1433–1450.3.0.CO;2-P>CrossRefGoogle Scholar
Jonsson, P., Snorrason, A. & Palsson, S. (1998). Discharge and sediment transport in the jökulhlaup on Skeiarrsandur in November (abs.). EOS, 79, S13.Google Scholar
Joo, M.et al. (2005). Estimation of long-term sediment loads in the Fitzroy catchment, Queensland, Australia, in MODSIM 2005 International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making: Proceedings, eds. Zerger, A. & Argent, R. M., pp. 1161–1167.
Jouanneau, J. M.et al. (1998). Dispersal and deposition of suspended sediment on the shelf off the Tagus and Sado estuaries, SW Portugal. Prog. Oceanogr., 42, 233–257.CrossRefGoogle Scholar
Judson, S. (1968). Erosion of the land, or what's happening to our continents?Amer. J. Sci., 56, 356–374.Google Scholar
Judson, S. & Ritter, D. F. (1964). Rates of regional denudation in the U.S. J. Geophys. Res., 69, 3395–6401.CrossRefGoogle Scholar
Jury, M. R. (2003). The coherent variability of African river flows: composite climate structure and the Atlantic circulation. Water Sci. Appl., 29, 1–10.Google Scholar
Kabat, P.et al. (eds.) (2003). Vegetation, Water, Humans and the Climate, Heidelberg: Springer-Verlag.
Kahya, E. & Dracup, J. A. (1993). U.S. streamflow patterns in relation to the El Niño/Southern Oscillation. Water Resour. Res., 29, 2491–2503.CrossRefGoogle Scholar
Kahya, E. & Dracup, J. A. (1994). The relationships between US streamflow and La Nina events. Water Resour. Res, 30, 2133–2141.Google Scholar
Kanellopoulos, T. D.et al. (2008). The influence of the Evros River on the recent sedimentation of the inner shelf of the NE Aegean Sea. Environ. Geol., 53, 1455–1464.CrossRefGoogle Scholar
Kao, S. J. & Liu, K. K. (2002). Exacerbation of erosion induced by human perturbation in a typical Oceania watershed: insight from 45 years of hydrological records from the Lanyang-Hsi River, northeastern Taiwan. Global Biogeochem. Cycles, 16, 1016.CrossRefGoogle Scholar
Kao, S., Lee, T. & Milliman, J. D. (2005). Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terr. Atmos. Ocean Sci., 16, 653.CrossRefGoogle Scholar
Kao, S. J. & Milliman, J. D. (2008). Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. J. Geol., 116, 431–448.CrossRefGoogle Scholar
Karabork, M. C., Kahya, E. & Komuscu, A. U. (2007). Analysis of Turkish precipitation data: homogeneity and the Southern Oscillation forcings on frequency distributions. Hydrol. Process., 21.CrossRefGoogle Scholar
Kauppila, P. & Koskiaho, J. (2003). Evaluation of annual loads of nutrients and suspended solids in Baltic rivers. Nord. Hydrol., 34, 203–220.CrossRefGoogle Scholar
Kayano, M. T. & Andreoli, R. V. (2007). Relations of South American summer rainfall interannual variations with the Pacific Decadal Oscillation. Int. J. Climatol., 27, 531–540.CrossRefGoogle Scholar
Keat, T. S. & Alias, K. B. (1982). Average annual and monthly surface water resources of penninsular Malaysia, 41 pp.
Keefer, D. K. (1994). The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorph., 10, 265–284.CrossRefGoogle Scholar
Kehew, A. E. & Lord, M. L. (1987). Glacial-lake outbursts along the mid-continent margins of the Laurentide ice-sheet, in Catastrophic Floods, eds. Mayer, L. & Nash, D., Boston: Allen and Unwin, pp. 95–120.Google Scholar
Keller, E. A., Valentine, D. W. & Gibbs, D. R. (1997). Hydrological response of small watersheds following the Southern California Painted Cave Fire of June 1990. Hydrol. Process., 11, 401–414.3.0.CO;2-P>CrossRefGoogle Scholar
Keller, R. (1962). Gewasser und Wasserhaushalt des Festlandes, Leipzig: Teubner.Google Scholar
Kelly, M. (2004). Florida river flow patterns and the Atlantic Multidecadal Oscillation. Draft Report, Ecologic Evaluation Section. Southwest Florida Water Management District, 80pp.
Kelly, E. F., Chadwick, O. A. & Hilinski, T. E. (1998). The effect of plants on mineral weathering. Biogeochem., 42, 21–53.CrossRefGoogle Scholar
Kelly, M. H. & Gore, J. A. (2008). Florida river flow patterns and the Atlantic Multidecadal Oscillation. Regul. Rivers Res. Manage., 24, 598–616.Google Scholar
Kelsey, H. M. (1978). Earthflows in Franciscan melange, Van Duzen River basin, California. Geology, 6, 361–364.2.0.CO;2>CrossRefGoogle Scholar
Kelsey, H. M. (1980). A sediment budget and an analysis of geomorphic process in the Van Duzen River basin, north coastal California, 1941–1975: Summary. Geol. Soc. Amer. Bull., 91, 190–195.2.0.CO;2>CrossRefGoogle Scholar
Kelsey, H. M.et al. (1995). Geomorphic analysis of streamside landslides in the Redwood Creek basin, northwestern California, US Geol. Surv. Prof. Paper 1454, J1–J12.Google Scholar
Kempe, S. (1982). Long-term records of CO2 pressure fluctuations in freshwaters, in Transport of Carbon and Minerals in Major World Rivers, ed. Degens, E. T., Hamburg: Mitt. Geol.-Palaont. Inst. SCOPE/UNEP, pp. 91–332.Google Scholar
Kempe, S. (1988). Freshwater carbon and the weathering cycle, in Physical and Chemical Weathering in Geochemical Cycles, eds. Lerman, A. & Meybeck, M., Dordrecht: Kluwer Academic Publishing, pp. 197–223.Google Scholar
Kempe, S., Pettine, M. & Cauwet, G. (1991). Biogeochemistry of European Rivers, in Biogeochemistry of Major World Rivers, eds. Degens, E. T., Kempe, S. & Richey, J. E., Chichester: John Wiley and Sons Ltd., pp. 169–211.Google Scholar
Keown, M. P., Dardeau, E. A. Jr & Causey, E. M. (1986). Historic trends in the sediment flow regime of the Mississippi River. Water Resour. Res., 22, 1555–1564.CrossRefGoogle Scholar
Keppler, E. T., Ziemer, R. R. & Cafferata, P. H. (1994). Changes in soil moisture and pore pressure after harvesting a forested hillslope in northern California, in Effects of Human-Induced Changes on Hydrologic Systems, Amer. Water Resour. Assoc., pp. 205–214.Google Scholar
Kerr, A. (2000). A North Atlantic climate pacemaker for the centuries. Science, 288, 1984–1986.CrossRefGoogle ScholarPubMed
Kesel, R. H. (2003). Human modifications to the sediment regime of the Lower Mississippi River flood plain. Geomorph., 56, 325–334.CrossRefGoogle Scholar
Kettner, A. J., Gomez, B. & M.Syvitski, J. P. (2008). Will human catalysts or climate change have a greater impact on the sediment load of the Waipaoa River in the 21st century?IAHS Publ. 325, 425–431.Google Scholar
Kettner, A. J., Gomez, B. & Syvitski, J. P. M. (2007). Modeling suspended sediment discharge from the Waipaoa River system, New Zealand: the last 3000 years. Water Resour. Res., 43, W07411.CrossRefGoogle Scholar
Kiage, L. M. & Liu, K. (2006). Late Quaternary paleoenvironmental changes in East Africa: a review of multiproxy evidence from palynology, lake sediments, and associated records. Prog. Phys. Geog., 30, 633.CrossRefGoogle Scholar
Kiely, G. (1999). Climate change in Ireland from precipitation and streamflow observations. Adv. Water Resour., 23, 141–151.CrossRefGoogle Scholar
Kim, T. W.et al. (2006). Quantification of linkages between large-scale climatic patterns and precipitation in the Colorado River Basin. J. Hydrol., 321, 173–186.CrossRefGoogle Scholar
Kim, W.et al. (2009). Is it feasible to build new land in the Mississippi River delta? EOS (Transactions, Amer. Geophys. Union), 90, 373–374.CrossRef
Kimstach, V. A., Meybeck, M. & Baroudy, E. (1998). A Water Quality Assessment of the Former Soviet Union, London: GEMS/Routledge.Google Scholar
Kjerfve, B. J.et al. (1992). Modeling of the residual circulation in Broken Bay and the lower Hawkesbury River – NSW Australia. J. Mar. Freshwater Res., 43, 1339–1357.CrossRefGoogle Scholar
Klee, G. A. (1991). Conservation of Natural Resources, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Kliot, N. (1994). Water Resources and Conflict in the Middle East, London: Routledge.Google Scholar
Knox, J. C. (1995). Fluvial systems since 20 000 years BP, in Global Continental Palaeohydrology, eds. Gregory, K. J., Starkel, L. & Baker, V. R., Chichester: John Wiley & Sons, pp. 87–108.Google Scholar
Knox, J. C. (2007). The Mississippi River system, in Large Rivers. Geomorphology and Management, ed. Gupta, A., Chichester: John Wiley & Sons, pp. 145–182.Google Scholar
Köppen–Geiger, (1954). Climate of the Earth (map: 1:16 mio), Justus Perthes, Darmstadt, Germany.
Korotaev, V. N. (1991). Geomorphology of River Deltas (in Russian), Moscow University Publ. House.Google Scholar
Korup, O., McSaveney, M. J. & Davies, T. R. H. (2004). Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand. Geomorph., 61, 189–207.CrossRefGoogle Scholar
Korup, O., Strom, A. L. & Weidinger, J. T. (2006). Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorph., 78, 3–21.CrossRefGoogle Scholar
Korzoun, V. I.et al. (eds.) (1977). Atlas of World Water Balance, Paris: UNESCO.
Kosmas, C. S., Moustakas, N., Danalatos, N. G. & Yassoglou, N. (1996). The Sparta field site: I. The impacts of land use and management on soil properties and erosion. II. The effect of reduced moisture on soil properties and wheat production. In C. J. Brandt and J. B. Thornes (eds.) Mediterranean Desertification and Land Use. John Wiley and Sons, Chichester, pp. 207–228.Google Scholar
Kostaschuk, R., Terry, J. & Raj, R. (2003). Suspended sediment transport during tropical-cyclone floods in Fiji. Hydrol. Process., 17, 1149–1164.CrossRefGoogle Scholar
Kostianitsin, M. N. (1964). Hydrology of the Dnieper and Southern Bug mouth area (in Russian), Moscow: Gidrometeoizdat.Google Scholar
Koutaniemi, L. (1991). Kasvihuone-Suomen vesivoima. Terra: Suomen maantieteellisen seuran aikakauskirja; Geografiska sällskapets i Finland tidskrift, 14.Google Scholar
Kranck, K. & Ruffman, A. (1981). Sedimentation in James Bay. Nat. Can., 109, 353–361.Google Scholar
Krasovskaia, I.et al. (1999). Dependence of the frequency and magnitude of extreme floods in Costa Rica on the Southern Oscillation Index. IAHS Publ., 255, 81–89.Google Scholar
Kravtsova, V. I., V. N. Mikhailova & N. A. Efremova (2009). Variation of hydrological regime, morphological structure, and landscape of Indus River delta (Pakistan) under the effect of large-scale water management measures. Water Resources, 36(4), 465–379.CrossRef
Krishnaswami, S. & Singh, S. K. (2005). Chemical weathering in the river basins of the Himalaya, India. Curr. Sci., 89, 841–849.Google Scholar
Krishnaswamy, J., Halpin, P. N. & Richter, D. D. (2001). Dynamics of sediment discharge in relation to land-use and hydro-climatology in a humid tropical watershed in Costa Rica. J. Hydrol., 253, 91–109.CrossRefGoogle Scholar
Kristmannsdottir, H., et al. (2002). Seasonal variation in the chemistry of glacial-fed rivers in Iceland. IAHS Publ. 127, 223–229.Google Scholar
Kuenzi, W. D., Horst, O. H. & R.V.McGehee, (1979). Effect of volcanic activity on fluvial-deltaic sedimenation in a modern arc-trench gap, southwestern Guatemala. Geol. Soc. Amer. Bull., 90, 827–838.2.0.CO;2>CrossRefGoogle Scholar
Kuhle, M. (2002). Outlet glaciers of the Pleistocene (LGM) south Tibetan ice sheet between Cho Oyu and Shisha Pangma as potential sources of former megafloods, in Flood and megaflood processes and deposits: recent and ancient examples, Int. Assoc. Sedimentol. Spec. Publ. 32, pp. 291–302.Google Scholar
Kump, L. R., Brantley, S. L. & Arthur, M. A. (2000). Chemical weathering, atmospheric CO2, and climate. Ann. Rev. Earth Planet. Sic., 28, 611–667.CrossRefGoogle Scholar
Kurtzman, D. & Scanlon, B. R. (2007). El Niño Southern Oscillation and Pacific Decadal Oscillation impacts on precipitation in southern and central US: evaluation of spatial distribution and predictions. Water Resour. Res., 43, W10427 doi:10.1029/20007WR005863.CrossRefGoogle Scholar
Kutzbach, J. E. & Guetter, P. J. (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. J. Atmos. Sci., 43, 1726–1759.2.0.CO;2>CrossRefGoogle Scholar
L'Vovich, M. I. (1974). World Water Resources and Their Future (Mysl'PH Moscow, Engl. Transl. 1979, AGU, Washington).
Labat, D.et al. (2004). Evidence for global runoff increase related to climate warming. Adv. Water Res., 27, 631–642.CrossRefGoogle Scholar
Lacerda, L. D. & Marins, R. V. (2002). River damming and changes in mangrove distribution. ISME/Glomis Electronic Journal, 2, 1–4.Google Scholar
Lahlou, A. (1982). La degradation specifique des bassins versants et son impact cur l'envasement des barrages. IAHS Publ. 137, 163–169.Google Scholar
Lahlou, A. (1996). Environmental and socio-economic impacts of erosion and sedimentation in North Africa. IAHS Publ. 236, 491–500.Google Scholar
Lajoie, F.et al. (2007). Impacts of dams on monthly flow characteristics. The influence of watershed size and seasons. J. Hydrol., 334, 423–439.CrossRefGoogle Scholar
Lamoureux, S. (2000). Five centuries of interannual sediment yield and rainfall-induced erosion in the Canadian high arctic recorded in lacustrine varves. Water Resour. Res., 36, 309–318.CrossRefGoogle Scholar
Lancaster, S. T. & Grant, G. E. (2006). Debris dams and the relief of headwater streams. Geomorph., 82, 84–97.CrossRefGoogle Scholar
Lane, P. N. J. & Sheridan, G. J. (2002). Impact of an unsealed forest road stream crossing: water quality and sediment sources. Hydrol. Process., 16, 2599–2612.CrossRefGoogle Scholar
Lanfear, K. & Hirsch, R. M. (1999). USGS study reveals a decline in long-term stream gauges. EOS, 80, 605–607.CrossRefGoogle Scholar
Lang, A.et al. (2003). Changes in sediment flux and storage within a fluvial system: some examples from the Rhine catchment. Hydrol. Process., 17, 3321–3334.CrossRefGoogle Scholar
Langbein, W. B. & Schumm, S. A. (1958). Yield of sediment in relation to mean annual precipitation. Trans. Amer. Geophys. Union, 39, 1076–1084.CrossRefGoogle Scholar
Langland, M. J., Lietman, P. L. & Hoffman, S. A. (1995). Synthesis of nutrient and sediment data for watersheds within the Chesapeake Bay drainage basin. US Geol. Surv. Open-File Report, 121 pp.
Larsen, G. & Asbjornsson, S. (1995). Volume of tephra and rock debris deposited by the 1918 jokulhlaups on western Myrdalssandur, south Iceland (abs), in IGS International Symposium on Glacial Erosion and Sedimentation, August 20–25, 1995.
Larsen, M. C. & Parks, J. E. (1997). How wide is a road? The association of roads and mass-wasting in a forested montane environment. Earth Surf. Process. Landforms, 22, 835–848.3.0.CO;2-C>CrossRefGoogle Scholar
Larsen, M. C. & Simon, A. (1993). A rainfall intensity-duration threshold for landslides in a humid-tropical environment Puerto Rico. Geogr. Ann., 75A, 13–23.CrossRefGoogle Scholar
Larsen, R. L. & Pittman, W. C. I. (1985). The Bedrock Geology of the World, New York: W.H. Freeman and Company, Inc.Google Scholar
Latif, M. & Barnett, T. P. (1994). Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634.CrossRefGoogle ScholarPubMed
Lavigne, F. & Suwa, H. (2004). Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorph., 61, 41–58.CrossRefGoogle Scholar
Lavigne, F. & Thouret, J. C. (2003). Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorph., 49, 45–69.CrossRefGoogle Scholar
Law, B. C. (ed.) (1968). Mountains and Rivers of India, Calcutta: India National Committee for Geography.
Lawler, D. M. (1994). Recent changes in rates of suspended sediment transport in the Jokulsa a Solheimasandi glacial river, southern Iceland. IAHS Publ. 224, 343–358.Google Scholar
Lawler, D. M. & Wright, L. J. (1996). Sediment yield decline and climate change in southern Iceland. IAHS Publ. 236, 415–425.Google Scholar
Laznik, M.et al. (1999). Riverine input of nutrients to the Gulf of Riga – temporal and spatial variation. J. Marine Syst., 23, 11–25.CrossRefGoogle Scholar
Lecce, S. A. (2000). Spatial variations in the timing of annual floods in the southeastern United States. J. Hydrol., 235, 151–169.CrossRefGoogle Scholar
Leeder, M. R., Harris, T. & Kirkby, M. J. (1998). Sediment supply and climate change; implications for basin stratigraphy. Basin Res., 10, 7–18.CrossRefGoogle Scholar
Legates, D. R., Lins, H. F. & McCabe, G. J. (2005). Comments on “Evidence for global runoff increase related to climate warming” by Labat et al. Adv. Water Res., 28, 1310–1315.CrossRefGoogle Scholar
Leifeste, D. K. (1974). Dissolved-solids discharge to the oceans from the conterminous United States. US Geological Survey Open-File Report, 8 pp.
Leithold, E. L., Blair, N. E. & Perkey, D. W. (2006). Geomorphic controls on the age of particulate organic carbon from small mountainous and upland rivers. Global Biogeochem. Cycles, 20, GB3022, doi:10.1029/2005GB002677.CrossRefGoogle Scholar
LeLoeuff, P., Marchall, E. & J.-Kothias, B. B. A. (1993). Environment et Resources aquatiques de Cote-d'Ivoire, ORSTOM, 586.
Leopold, L. B. (1994). A View of the River. Cambridge: Harvard University Press, 290 pp.Google Scholar
Levashova, E. A.et al. (2004). Natural and human-induced variations in water and sediment runoff in the Danube River mouth. Water Resour., 31, 235–246.CrossRefGoogle Scholar
Lewis, J.et al. (2001). Impacts of logging on storm peak flows, flow volumes and suspended sediment loads in Casper Creek, California, in Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas, eds. Wigmosta, M. S. & Burges, S. J., Washington, DC: American Geophysical Union, pp. 85–126.Google Scholar
Li, Q.et al. (2007). Impacts of human activities on the sediment regime of the Yangtze River. IAHS Publ. 314, 11–19.Google Scholar
Li, Y.-H. (1976). Denudation of Taiwan Island since the Pliocene Epoch. Geology, 4, 105–107.2.0.CO;2>CrossRefGoogle Scholar
Li, Z. (1992). The effects of forest in controlling gully erosion. IAHS Publ. 209, 429–437.Google Scholar
Licitri, R. & Normand, D. (1969). Etudes générales des aires d'irrigation et d'assainissement agricloe en Algérie, dossier O.Sogreah/Mara.
Lienou, G.et al. (2005). Regimes of suspended sediment flux in Cameroon: review and synthesis for the main ecosystems; climatic diversity and anthropogenic activities. Hydrol. Sci. J., 50, 111–123.CrossRefGoogle Scholar
Lins, H. F. (1997). Regional streamflow regimes and hydroclimatology of the United States. Water Resour. Res., 33, 1655–1668.CrossRefGoogle Scholar
Lins, H. F. & Slack, J. R. (1999). Streamflow trends in the United States. Geophys. Res. Lett., 26, 227–230.CrossRefGoogle Scholar
Liquete, C.et al. (2005). Mediterranean river systems of Andalusia, southern Spain, and associated deltas: a source to sink approach. Mar. Geol., 222, 471–495.CrossRefGoogle Scholar
Liquete, C.et al. (2007). Long-term development and current status of the Barcelona continental shelf: a source-to-sink approach. Cont. Shelf Res., 27, 1779–1800.CrossRefGoogle Scholar
Liquete, C.et al. (2009). Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts. J. Hydrol., 366, 76–88.CrossRefGoogle Scholar
Lisitzin, A. P. (1972). Sedimentation in the World Ocean. Soc. Econ. Paleont. Mineral Spec. Publ. 17.CrossRef
Litchfield, N.et al. (2008). The Waipaoa Sedimentary System: research review and future directions. IAHS Publ. 325, 408–416.Google Scholar
Little, C., A. Lara, J. McPhee & R. Urrutia (2009). Revealing the impact of forest exotic planatations on water yield in large scale watersheds in South-Central Chile. J. Hydrol., 374, 162–170.CrossRef
Liu, G.-W. & Wang, J. P. (1999). A study of extreme floods in China for the past 100 years. IAHS Publ. 255, 109–119.Google Scholar
Liu, J. P. & Milliman, J. D. (2004). Reconsidering melt-water pulses 1A and 1B: Global impacts of rapid sea-level rise. Oceanic and Coastal Research (China), 3, 1283–1290.Google Scholar
Liu, S.et al. (2001). Regional variation of sediment load of Asian rivers flowing into the ocean. Sci. China, Ser. B Chem., 44, 23–32.CrossRefGoogle Scholar
Livingstone, D. A. (1963). Chemical composition of rivers and lakes, US Geol. Surv. Prof. Paper 440-G, 64 pp.
Livingstone, I. (1991). Livestock management and “overgrazing” among pastoralists. Ambio, 20, 80–85.Google Scholar
Lloret, J.et al. (2001). Fluctuations of landings and environmental conditions in the north-western Mediterranean Sea. Fish. Oceanogr., 10, 33–50.CrossRefGoogle Scholar
Lombard, R. E.et al. (1981). Channel conditions in the Lower Toutle and Cowlitz rivers resulting from the ­mudflows of May 18, 1980, US Geol. Surv. Circular 850-C, 16 pp.
Long, B. F., Morissette, F. & Lebel, J. (1982). Etude du material particulaire en suspension et du material dissous des rivieres Romaine et Saint-Jean durant un cycle saisonnies, Hydro-Quebec, 199.
Long, Y.-Q.et al. (1994). Variability of sediment load and its impacts on the Yellow River. IAHS Publ. 224, 431–436.Google Scholar
Lopes, C. & Mix, A. C. (2009). Pleistocene megafloods in the northeast Pacific. Geology, 37, 79.CrossRefGoogle Scholar
López-Moreno, J. I.et al. (2007). Influence of the North Atlantic Oscillation on water resources in central Iberia: Precipitation, streamflow anomalies, and reservoir management strategies (DOI 10.1029/2007WR005864). Water Resour. Res., 43, 9411 doi:10.1029/2007WR005864.CrossRefGoogle Scholar
López-Moreno, J. I.et al. (2009). Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal. Water Resour. Res., 45, W02405 doi:10.1029/2008WR007198.CrossRefGoogle Scholar
Love, D.et al. (2008). Changing rainfall and discharge patterns in the northern Limpopo Basin, Zimbabwe (abs.). Geophys. Res. Abs., EGU General Assembly 2008, SRef-ID:1607–7962/gra/EGU2008-A-07350.
Lu, X. & Higgitt, D. L. (1998). Recent changes of sediment yield in the Upper Yangtze, China. Environ. Management, 22, 697–709.CrossRefGoogle ScholarPubMed
Lu, X. X. & Siew, R. Y. (2005). Water discharge and sediment flux in the lower Mekong River. Hydrol. Earth Syst. Sci., 2, 2287–2325.CrossRefGoogle Scholar
Lu, X. X.et al. (2007). Rapid channel incision of the lower Pearl River (China) since the 1990s. Hydrol. Earth Syst. Sci., 4, 2205–2227.CrossRefGoogle Scholar
Luce, C. H. & Black, T. A. (1999). Sediment production from forest roads in western Oregon. Water Resour. Res., 35, 2561–2570.CrossRefGoogle Scholar
Luce, C. H. & Black, T. A. (2001). Spatial and temporal patterns in erosion from forest roads, in Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas, eds. Wigmosta, M. S. & Burges, S. J., Amer. Geophys. Union, pp. 165–178.Google Scholar
Ludwig, W. & Probst, J. L. (1996). A global modelling of the climatic, morphological, and lithological control of river sediment discharges to the oceans. IAHS Publ. 236, 21–22.Google Scholar
Ludwig, W. & Probst, J. L. (1998). River sediment discharge to the oceans; present-day controls and global budgets. Amer. J. Sci., 298, 265–295.CrossRefGoogle Scholar
Lugo, A. E. (1983). Organic carbon export by waters of Spain, in Transport of Carbon and Minerals in Major World Rivers Pt. 2, eds. Degens, E. T., Kempe, S. & Soliman, H., Hamburg: SCOPE/UNEP, pp. 267–279.Google Scholar
Lundberg, N. & Dorsey, R. J. (1990). Rapid Quaternary emergence, uplift, and denudation of the Coastal Range, eastern Taiwan. Geology, 18, 638.2.3.CO;2>CrossRefGoogle Scholar
Luo, X. J.et al. (2006). Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China. Environ. Pollut., 139, 9–20.CrossRefGoogle ScholarPubMed
Lyons, W. B.et al. (2002). Organic carbon fluxes to the ocean from high-standing islands. Geology, 30, 443–446.2.0.CO;2>CrossRefGoogle Scholar
Lyons, W. B.et al. (2005). Chemical weathering in high- sediment-yielding watersheds, New Zealand. J. Geophys. Res., 110, F1008, doi:1029/2003JF000088.CrossRefGoogle Scholar
Macdonald, R.et al. (1998). A sediment and organic carbon budget for the Canadian Beaufort shelf. Mar. Geol., 144, 255–273.CrossRefGoogle Scholar
Macias, J. L.et al. (2004). The 26 May 1982 breakout flows derived from failure of a volcanic dam at El Chichón, Chiapas, Mexico. Geol. Soc. Amer. Bull., 116, 233–246.CrossRefGoogle Scholar
Macklin, M. G.et al. (2006). Past hydrological events reflected in the Holocene fluvial record of Europe. Catena, 66, 145–154.CrossRefGoogle Scholar
Madej, M. A. (1995). Changes in channel-stored sediment, Redwood Creek, northwestern Califonia, US Geol. Surv. Prof. Paper 1454, O1–O27.Google Scholar
Magilligan, F. J. & Nislow, K. H. (2005). Changes in hydrologic regime by dams. Geomorph., 71, 61–78.CrossRefGoogle Scholar
Magilligan, F. J., Nislow, K. H. & Graber, B. E. (2003). Scale-independent assessment of discharge reduction and riparian disconnectivity following flow regulation by dams. Geology, 31, 569.2.0.CO;2>CrossRefGoogle Scholar
Maizels, J. (1989). Sedimentology and paleohydrology of Holocene flood deposits in front of a Jokulhlaup glacier, South Iceland, inFloods: Hydrological, Sedimentological and Geomorphological Implications, eds. Beven, K. & Carling, P., Chichester: John Wiley & Sons, pp. 239–251.Google Scholar
Major, J. J. (2004). Posteruption suspended sediment transport at Mount St. Helens: decadal-scale relationships with landscape adjustments and river discharges. J. Geophys. Res., 109, F01002, doi:10.1029/2002JF000010, 2004.CrossRefGoogle Scholar
Major, J. J.et al. (2000). Sediment yield following severe volcanic disturbance. A two-decade perspective from Mount St. Helens. Geology, 28, 819–822.2.0.CO;2>CrossRefGoogle Scholar
Malmstrom, V. H. (1958). A Regional Geography of Iceland, Nat. Acad. Sci-Nat. Res. Council.Google Scholar
Manabe, S., Milly, P. C. D. & Wetherald, R. (2004). Simulated long-term changes in river discharge and soil moisture due to global warming. Hydrol. Sci. J., 49, 625–642.CrossRefGoogle Scholar
Mantua, N. J. & Hare, S. R. (2002). The Pacific Decadal Oscillation. J. Oceanogr., 58, 35–44.CrossRefGoogle Scholar
Mantua, N. J.et al. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc., 78, 1069–1079.2.0.CO;2>CrossRefGoogle Scholar
Marden, M. & Rowan, D. (1993). Protective value of vegetation on tertiary terrain before and during Cyclone Bola, East Coast, North Island, New Zealand. N. Z. J. Forest. Sci., 23, 255–263.Google Scholar
Marden, M.et al. (1992). A decade of earthflow research and interrelated studies in the North Island of New Zealand. IAHS Publ. 209, 263–271.Google Scholar
Marden, M.et al. (2008). Last glacial aggradation and postglacial sediment production from the non-glacial Waipaoa and Waimata catchments, Hikurangi Margin, North Island, New Zealand. Geomorph., 99, 404–419.CrossRefGoogle Scholar
Maria, A.et al. (2000). Source and dispersal of jokulhlaup sediments discharged to the sea following the 1996 Vatnajokull eruption. Geol. Soc. Amer. Bull., 112, 1507.2.0.CO;2>CrossRef
Mariño, M. G. (1992). Implications of climate change on the Ebro Delta, in Climate Change and the Mediterranean, eds. Jeftic, L. J., Milliman, J. D. & Sestini, G., London: Edward Arnold, pp. 304–327.Google Scholar
Markgraf, V. (1993). Climatic history of Central and South America since 18,000 yr B.P.: comparison of pollen records and model simulations, in Global Climate Since the Last Glacial Maximum, eds. Wright, H. E., Jr., Kutzbach, J. E., Webb, T., III, et al., Minneapolis, MN: University of Minnesota Press, pp. 357–385.Google Scholar
Markham, A. & Day, G. (1994). Sediment transport in the Fly River system, Papua New Guinea. IAHS Publ. 22, 233–239.Google Scholar
Marques, M. A. & Mora, E. (1992). The influence of aspect on runoff and soil loss in Mediterranean burnt forest (Spain). Catena, 19, 333–344.CrossRefGoogle Scholar
Martins, O. & Probst, J.-L. (1991). Biogeochemistry of major African rivers: Carbon and mineral transport, in Biogeochemistry of Major World Rivers, eds. Degens, E. T., Kempe, S. & Richey, J. E., John Wiley and Sons Ltd, pp. 121–156.Google Scholar
Massong, T. M. & Montgomery, D. R. (2000). Influence of sediment supply, lithology, and wood debris on the distribution of bedrock and alluvial channels. Geol. Soc. Amer. Bull., 112, 591–599.2.0.CO;2>CrossRefGoogle Scholar
Matsuoka, A., Yamakoshi, T. & Tamura, K. (2008). Sediment yield from seismically-disturbed mountainous watersheds revealed by multi-temporal aerial LiDAR surveys. IAHS Publ. 325, 208–216.Google Scholar
Mauget, S. A. (2003). Multidecadal regime shifts in US streamflow, precipitation, and temperature at the end of the twentieth century. J. Climate, 16, 3905–3916.2.0.CO;2>CrossRefGoogle Scholar
McCabe, G. J., Palecki, M. A. & Betancourt, J. L. (2004). Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Nat. Acad. Sci. USA, 101, 4136–4141.CrossRefGoogle ScholarPubMed
McClelland, J. W.et al. (2004). Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw and fires as potential agents of change. J. Geophys. Res., 109, doi:10.1029/2004JD004583.CrossRef
McClelland, J. W.et al. (2006). A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophy. Res. Lett., 33, L06715, doi:10.1029/2006GL025753.CrossRefGoogle Scholar
McCully, P. (1996). Silenced Rivers: The Ecology and Politics of Large Dams, London: Zed Books.Google Scholar
McDowell, W. H., Lugo, A. E. & James, A. (1995). Export of nutrients and major ions from Caribbean catchments. J. N. Amer. Benthol. Soc., 14, 12–20.CrossRefGoogle Scholar
McKergow, L. A.et al. (2005). Sources of sediment to the Great Barrier Reef World Heritage Area. Mar. Poll. Bull., 51, 200–211.CrossRefGoogle ScholarPubMed
McLennan, S. M. (1993). Weathering and global denudation. J. Geol., 101, 295–303.CrossRefGoogle Scholar
McMahon, T. A. (1979). Hydrological characteristics of arid zones. IAHS Publ. 128, 105–123.Google Scholar
McMahon, T. A.et al. (1992). Global Runoff: Continental Comparisons of Annual Flows and Peak Discharges, Cremlingen-Destedt, West Germany: Catena Verlag.Google Scholar
McNamara, J. P., Kane, D. L. & Hinzman, L. D. (1998). An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska: a nested watershed approach. J. Hydrol., 206, 39–57.CrossRefGoogle Scholar
McNeill, J. R. (1992). The Mountains of the Mediterranean World: An Environmental History, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McPhee, J. (1989). The Control of Nature, New York: Farrar Straus Giroux.Google Scholar
McPhee, J. (1994). Assembling California, New York: Farrar, Straus and Giroux.Google Scholar
,MDBMC (1999). The salinity audit of the Murray–Darling Basin: a 100-year perspective, Canberra, Australia, 39.
Meade, R. H. (1969). Errors in using modern stream-load data to estimate natural rates of denudation. Geol. Soc. Amer. Bull., 80, 1265–1274.CrossRefGoogle Scholar
Meade, R. H. (1994). Suspended sediments of the modern Amazon and Orinoco rivers. Quat. Int., 21, 29–39.CrossRefGoogle Scholar
Meade, R. H. (1996). River-sediment inputs to major deltas, in Sea-Level Rise and Coastal Subsidence, eds. Milliman, J. D. & Haq, B. U., Dordrecht, Boston: Kluwer Academic Publishers, pp. 63–85.Google Scholar
Meade, R. H. (2008). Transcontinental moving and storage: the Orinoco and Amazon Rivers transfer the Andes to the Atlantic. In Large Rivers: Geomorphology and Management, ed. Gupta, A., Chichester: John Wiley, pp. 45–63.Google Scholar
Meade, R. H., Bobrovitskaya, N. N. & Babkin, V. I. (2000). Suspended-sediment and fresh-water discharges In the Ob and Yenisey rivers, 1960–1988. Int. J. Earth Sci., 89.CrossRefGoogle Scholar
Meade, R. H.et al. (1985). Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science, 228, 488–490.CrossRefGoogle ScholarPubMed
Meade, R. H. & Moody, J. A. (2008). Changes in the discharge of sediment through the Missouri–Mississippi River system, 1940–2007. Proc.VIII Encontro Nacional de Engenharia de Sedimentos, Campo Grande, Brazil, 2–8 November, 27 pp.Google Scholar
Meade, R. H. & Moody, J. A. (2010). Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process., 24, 35–49.Google Scholar
Meade, R. H. & Parker, R. S. (1985). Sediment in rivers of the United States, US Geol. Surv. Water Supply Paper 2275, pp. 49–60.
Meade, R. H., Yuzyk, T. R. & Day, T. J. (1990). Movement and storage of sediment in rivers of the United States and Canada, in The Geology of North America: Surface Water Hydrology, eds. Wolman, M. G. & Riggs, H. C., Geological Society of America, O-1, pp. 255–280.Google Scholar
Meade, R. H. (ed.) (1995). Contaminants in the Mississippi River, 1987–92, US Geol. Surv. Circular 1133.
Megnounif, A.et al. (2007). Key processes influencing erosion and sediment transport in a semi-arid Mediterranean area: the Upper Tafna catchment, Algeria. Hydrol. Sci. J., 52, 1271–1284.CrossRefGoogle Scholar
Meigs, A.et al. (2006). Ultra-rapid landscape response and sediment yield following glacier retreat, Icy Bay, southern Alaska. Geomorph., 78, 207–221.CrossRefGoogle Scholar
Meigs, P. (1953). World distribution of arid and sem-arid homoclimates, inArid Zone Hydrology (UNESCO), pp. 203–209.Google Scholar
Meneghini, B., Simmonds, I. & Smith, I. N. (2007). Association between Australian rainfall and the southern Annular Mode. Int. J. Climatol., 27.CrossRefGoogle Scholar
Mensing, S. A., Michaelsen, J. & Byrne, R. (1999). A 560-year record of Santa Ana fires reconstructed from charcoal deposited in the Santa Barbara Basin California. Quat. Res., 51, 295–305.CrossRefGoogle Scholar
Mernild, S. H., Liston, G. E. & Hasholt, B. (2008). East Greenland freshwater runoff to the Greenland-Iceland-Norwegian Seas 1999–2004 and 2071–2100. Hydrol. Process., 22, 4571–4586.CrossRefGoogle Scholar
Mertes, L. A. K. & Warrick, J. A. (2001). Measuring flood output from 110 coastal watersheds in California with field measurements and SeaWiFS. Geology, 29, 659.2.0.CO;2>CrossRefGoogle Scholar
Métivier, F. & Gaudemer, Y. (1999). Stability of output fluxes of large rivers in South East Asia during the last 2 million years: implications on floodplain processes. Basin Res., 11, 293–303.CrossRefGoogle Scholar
Meybeck, M. (1979). Concentration des eaux fluviales en ­éléments majeurs et apports en solution aux océans. Rev. Geogr. Phys. Geol., 21, 215–246.Google Scholar
Meybeck, M. (1988). How to establish and use world budgets of riverine materials, in Physical and Chemical Weathering in Geochemical Cycles, eds. Lerman, A. & Meybeck, M., Dordrecht: Kluwer Acad. Publ., pp. 247–272.Google Scholar
Meybeck, M. (1994). Origin and variable composition of present day riverborne material, in Material Fluxes on the Surface of the Earth. Washington, DC: Nat. Acad. Press, pp. 61–73.Google Scholar
Meybeck, M. (1998). Surface water quality: global assessment and perspectives, in Water: A Looming Crisis?, ed. Zebidi, H., UNESCO, IHP-V, pp. 173–184.Google Scholar
Meybeck, M. (2002). Riverine quality at the Anthropocene: propositions for global space and time analysis, illustrated by the Seine River. Aqua. Sci.-Res. Across Boundaries, 64, 376–393.CrossRefGoogle Scholar
Meybeck, M. (2003). Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Phil. Trans. R. Soc. London, Ser. B, 358, 1935–1955.CrossRefGoogle ScholarPubMed
Meybeck, M., Chapman, D. V. & Helmer, R. (1989). Global Freshwater Quality. A First Assessment, Oxford: Blackwell for GEMS/WHO/UNEP.Google Scholar
Meybeck, M., Marsily, G. & Fustec, E. (eds.) (1998). La Seine en Son Bassin, Elsevier.
Meybeck, M. & Ragu, A. (1996). River discharges to the oceans: an assessment of suspended solids, major ions and nutrients, GEMS/EAP, 245 pp.
Meybeck, M. & Vörösmarty, C. (2005). Fluvial filtering of land-to-ocean fluxes: from natural Holocene variations to Anthropocene. C.R. Geosci., 337, 107–123.CrossRefGoogle Scholar
Meyer, W. B. & Turner, B. L. (eds.) (1994). Changes in Land Use and Land Cover: a Global Perspective, Cambridge: Cambridge University Press.Google Scholar
Meza, F. J. (2005). Variability of reference evapotranspiration and water demands. Association to ENSO in the Maipo river basin, Chile. Global Planet. Change, 47, 212–220.CrossRefGoogle Scholar
Mikhailova, M. (1998). The hydrological regime and dynamics of the drainage network of the mouth of the HuangHe River. Water Res., 25, 98–110.Google Scholar
Mikhailova, M. V. & Dzhaoshvili, S. V. (1998). Hydrological and morphological processes in the mouth area of the Rioni River and their anthropogenic changes. Water Res., 25, 134–142.Google Scholar
Mikhailova, M. V.et al. (1998). The Tiber River delta and the hydrological and morphological features of its formation. Water Res., 25, 572–582.Google Scholar
Milliman, J. D. (1975). Upper continental margin sedimentation off Brazil – a synthesis. Contrib. Sediment. Geol., 4, 151–175.Google Scholar
Milliman, J. D. (1980). Sedimentation in the Fraser River and its estuary, southwestern British Columbia (Canada). Estuar. Coast. Mar. Sci., 10, 609–633.CrossRefGoogle Scholar
Milliman, J. D. (1990). River discharge of water and sediment to the oceans: variations in space and time, in Facets of Modern Biogeochemistry, ed. Ittekkot, S. K. V., Michaelis, W., pp. 83–90.
Milliman, J. D. (1995). Sediment discharge to the ocean from small mountainous rivers: the New Guinea example. Geo-Mar. Lett., 15, 127–133.CrossRefGoogle Scholar
Milliman, J. D., Broadus, J. M. & Gable, F. (1989). Environmental and economic impact of rising sea level and subsiding deltas: the Nile and Bengal examples. Ambio, 18, 340–345.Google Scholar
Milliman, J. D., Farnsworth, K. L. & Albertin, C. S. (1999). Flux and fate of fluvial sediments leaving large islands in the East Indies. J. Sea Res., 41, 97–107.CrossRefGoogle Scholar
Milliman, J. D. & Haq, B. U. (eds.) (1996). Sea-level Rise and Coastal Subsidence. Causes, Consequences, and Strategies, Dordrecht: Kluwer Academic Press.CrossRef
Milliman, J. D. & Kao, S. J. (2005). Hyperpycnal discharge of fluvial sediment to the ocean: impact of Super-Typhoon Herb (1996) on Taiwanese rivers. J. Geol., 113, 503–516.CrossRefGoogle Scholar
Milliman, J. D.et al. (2010). Recent trends in fluvial discharge to the Black Sea. CIESM Workshop Monograph 39, pp. 45–51.
Milliman, J. D. & Meade, R. H. (1983). World-wide delivery of river sediment to the ocean. J. Geol., 91, 1–21.CrossRefGoogle Scholar
Milliman, J. D., Rutkowski, C. & Meybeck, M. (1995). River discharge to the sea: a global river index (GLORI), LOICZ, 125 pp.
Milliman, J. D., , G. Sestini & Jeftic, L. (1992). The Mediterranean Sea and climate change – an overview, in Climate Change and Sealevel Rise in the Mediterranean Basin: Implications for the Future, eds. Jeftic, L., Milliman, J. D. & Sestini, G., London: Edward Arnold Publ., pp. 1–14.Google Scholar
Milliman, J. D. & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharged to the ocean: the importance of small mountainous rivers. J. Geol., 100, 525–544.CrossRefGoogle Scholar
Milliman, D. J., G. S. Quraishee & M. A. A. Beg (1984). Sediment discharge from the Indus River to the ocean: past, present, and future, in B. U. Haq and J. D. Milliman (eds.), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan, Van Nostrand Reinhold, New York, pp. 65–70.
Milliman, J. D.et al. (1987). Man's Influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. J. Geol., 95, 751–762.CrossRefGoogle Scholar
Milliman, J. D.et al. (1996). Catastrophic discharge of fluvial sediment to the ocean: evidence of Jokulhlaups events in the Alsek Sea Valley, southeast Alaska (USA). IAHS Publ. 236, 367–379.Google Scholar
Milliman, J. D.et al. (2007). Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35, 779–782.CrossRefGoogle Scholar
Milliman, J. D.et al. (2008). Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global Planet. Change, 62, 187–194.CrossRefGoogle Scholar
Millot, R.et al. (2002). The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett., 196, 83–98.CrossRefGoogle Scholar
Millot, R.et al. (2003). Northern latitude chemical weathering rates: clues from the MacKenzie River Basin, Canada. Geochim. Cosmochim. Acta, 67, 1305–1329.CrossRefGoogle Scholar
Milly, P. C. D., Dunne, K. A. & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438.CrossRefGoogle Scholar
Milly, P. C. D.et al. (2008). Stationarity is dead: Whither water management?Science, 319, 573–574.CrossRefGoogle ScholarPubMed
Milner, A. M., Osgood, M. W. & Munkittrick, K. R. (2005). Rivers of Arctic North America, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 902–937.Google Scholar
Water, Ministry of Agriculture and (1984). Water Atlas of Saudi Arabia, Saudi Arabia.Google Scholar
Minobe, S. (1997). A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683–686.CrossRefGoogle Scholar
Miyata, S.et al. (2009). Effects of forest floor coverage on overland flow and soil erosion on hillslopes in Japanese cypress plantation forests. Water Resour. Res., 45, W06402.CrossRefGoogle Scholar
Mizuyama, T. & Kobashi, S. (1996). Sediment yield and topographic change after major volcanic activity. IAHS Publ. 236, 295–301.Google Scholar
Mohammad, A. G. & A. A. Ada (2010). The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena, 81, 97–103.CrossRef
Molnar, P. (2001). Climate change, flooding in arid environments, and erosion rates. Geology, 29, 1071–1074.2.0.CO;2>CrossRefGoogle Scholar
Molnar, P. & England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?Nature, 346, 29–34.CrossRefGoogle Scholar
Molnia, B. F. & Carlson, P. R. (1995). Glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, USA (abs). IGS International Symposium on Glacial Erosion and Sedimentation, August 20–25, 1995.
Montgomery, D. R. (1994). Road surface drainage, channel initiation, and slope instability. Water Resour. Res., 30, 1925–1932.CrossRefGoogle Scholar
Montgomery, D. R. (2007). Dirt: The erosion of civilizations, University of California Press.Google Scholar
Montgomery, D. R. & Brandon, M. T. (2002). Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett., 201, 481–489.CrossRefGoogle Scholar
Montgomery, D. R. & Buffington, J. M. (1997). Channel-reach morphology in mountain drainage basins. Geol. Soc. Amer. Bull., 104, 596–611.2.3.CO;2>CrossRefGoogle Scholar
Montgomery, D. R., Panfil, M. S. & Hayes, S. K. (1999). Channel-bed mobility response to extreme sediment loading at Mount Pinatubo. Geology, 27, 271–274.2.3.CO;2>CrossRefGoogle Scholar
Montgomery, D. R. & Piegay, H. (2003). Wood and rivers: interactions with channel morphology and processes. Geomorph., 51, 1–5.CrossRefGoogle Scholar
Montgomery, D. R.et al. (2000). Forest clearing and regional landsliding. Geology, 28, 311–314.2.0.CO;2>CrossRefGoogle Scholar
Moody, D. W., Chase, E. B. & Aronson, D. A. (1986). National Water Summary 1985 – Hydrologic Events and Surface Water Resources, U.S. Geol. Surv. Water Supply Paper 2300, 519 p.
Moody, J. A. & Martin, D. A. (2009). Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. Int. J. Wildland Fire, 18, 96–115.CrossRefGoogle Scholar
Moon, S.et al. (2007). Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochim. Cosmochim. Acta, 71, 1411–1430.CrossRefGoogle Scholar
Mooney, H. A. & Parsons, D. J. (1973). Structure and function of the California chaparral – an example from San Dimas. Ecol. Stud., 7, 83–112.CrossRefGoogle Scholar
Moore, W. S. (1996). Large groundwater inputs to coastal waters revealed by 226-Ra enrichment. Nature, 380, 612–614.CrossRefGoogle Scholar
Moore, R. D. & S. M. Wondzell (2005). Physical hydrology and the effects of forest harvesting in the Pacific Northwest: a review. J. Amer. Water Resour. Assoc., 41, 763–784.CrossRef
Mosley, M. P. (2000). Regional differences in the effects of El Niño and La Niña on low flows and floods. Hydrol. Sci. J., 45, 249–267.CrossRefGoogle Scholar
Mount, J. F. (1995). California Rivers and Streams: The Conflict Between Fluvial Process and Land Use, Berkeley: University of California Press.Google Scholar
Mount, J. F. and Twiss, R. (2005).Subsidence, sea level rise and seismicity in the Sacramento–San Joaquin Delta. San Francisco Estuary and Watershed Science, 3(1).CrossRefGoogle Scholar
Moy, C. M.et al. (2002). Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420, 162–165.CrossRefGoogle ScholarPubMed
Mulder, T. & Syvitski, J. P. M. (1995). Turbidity currents generate at river mouths during exceptional discharges to the world oceans. J. Geol., 103, 285–299.CrossRefGoogle Scholar
Mulder, T.et al. (1998). The Var submarine sedimentary system: understanding Holocene sediment delivery processes and their importance to the geological record, in Geological Processes on Continental Margins: Sedimentation, Mass Wasting and Stability, eds. Stoker, M., Evans, D. & Cramp, A., Geol. Soc., London, Spec. Publ. 129, pp. 145–166.Google Scholar
Mulder, T.et al. (2003). Hyperpycnal turbidity currents: initiation, behavior and related deposits. A review. Mar. Pet. Geol., 20, 861–882.CrossRefGoogle Scholar
Mulholland, P. J. & Watts, J. A. (1982). Transport of organic carbon to the oceans by the rivers of North America: a synthesis of existing data. Tellus, 34, 176–186.CrossRefGoogle Scholar
Murray, S. P.et al. (1982). Physical processes and sedimentation on a broad, shallow bank. Estuar. Coast. Shelf Sci., 14, 135.CrossRefGoogle Scholar
Mutz, M. (2003). Hydraulic effects of wood in streams and rivers, in The Ecology and Management of Wood in World Rivers, eds. Gregory, S. V., Boyer, K. L. & Gurnell, A. M.. Amer. Fish. Soc., pp. 93–107.Google Scholar
,NSW. Department of Public Works (1975). Shoalhaven River Entrance Study: Interim Report, 33 pp.
Nace, R. (1967). Water resources: a global problem with local roots. Environ. Sci. Technol., 1, 550–560.CrossRefGoogle ScholarPubMed
Nace, R. L. (1970). Hydrological and related data programs in the United States of America, in CENTO Seminar on Evaluation of water resources with scarce data, Beirut, Lebanon: Middle East Devel. Div, Ministry Overseas Devel., pp. 87–101.Google Scholar
Nageswara Rao, K. et al. (2010). Impacts of sediment retention by dams on delta shoreline regression: evidences from the Krishna and Godavari deltas, India. Earth Surf. Process. Landforms, 35, 817–827.
Naiman, R. J., Johnston, C. A. & Kelley, J. C. (1988). Alteration of North American streams by beaver. BioScience, 38, 753–762.CrossRefGoogle Scholar
Nakajima, X. (2006). Hyperpycnites deposited 700 km away from river mouths in the central Japan Sea. J. Sed. Res., 76, 60–73.CrossRef
Narayana, A. C. (2006). Rainfall variability and its impact on the sediment discharge from the rivers of Kerala region, southwestern India. J. Geol. Soc. India, 68.Google Scholar
Environment, National Board of Water and theHydrological Yearbook, Helsinki, Finland.
Neal, E. G., Todd Walter, M. & Coffeen, C. (2002). Linking the pacific decadal oscillation to seasonal stream discharge patterns in Southeast Alaska. J. Hydrol., 263, 188–197.CrossRefGoogle Scholar
,NEDECO (1959). River Studies and Recommendations on Improvement of Niger and Benue, Amsterdam: North Holland Publ., 1000 p.Google Scholar
,NEDECO (1968). Suriname transportation study, Delft: The Netherlands, 293 pp.
,NEDECO (1973). Rio Magdalena and Canal del Dique Survey Project. Technical Report, The Hague, The Netherlands Engineering Consultants.
Nelson, C. H. (1990). Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain. Mar. Geol., 95, 395–418.CrossRefGoogle Scholar
New, M.et al. (2001). Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 1899–1922.CrossRefGoogle Scholar
Newman, M., Compo, G. P. & Alexander, M. A. (2003). ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 3853–3857.2.0.CO;2>CrossRefGoogle Scholar
Newson, M. (1997). Land, Water and Development. Sustainable Management of River Basin Systems, London: Routledge.Google Scholar
Nicholas, A. P.et al. (1999). Modeling and monitoring river response to environmental change: the impact of dam construction and alluvial gravel extraction on bank erosion rates in the lower Alfios Basin, Greece, in Fluvial Processes and Environmental Change, eds. Brown, A. G., Quine, T. A. & Brown, T., Chichester: John Wiley and Sons.Google Scholar
Nilsson, C.et al. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308, 405.CrossRefGoogle ScholarPubMed
Nittrouer, J. A., Allison, M. A. & Campanella, R. (2008). Bedform transport rates for the lowermost Mississippi River. J. Geophys. Res., 113, F03004 doi:10.1029/2007JF000795.CrossRefGoogle Scholar
Nixon, S. W. (2003). Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river?Ambio, 32, 30–39.CrossRefGoogle ScholarPubMed
,NOAA (1985). Gulf of Mexico Coastal and Ocean Zones Strategic Assessment: Data Atlas, Washington, DC: Goverment Printing Office.Google Scholar
Nolan, K. M. & Janda, R. J. (1995). Movement and sediment yield of two earthflows, northwestern California. US Geol. Surv. Prof. Paper 1454, F1–12.Google Scholar
Nolan, K. M., Kelsey, H. M. & Marron, D. C. (eds.) (1995). Geomorphic processes and aquatic habitat in the Redwood Creek basin, northwestern California. US Geol. Surv. Prof. Paper 1454.
Nolan, K. M., Lisle, T. E. & Kelsey, H. N. (1987). Bankful discharge and sediment transport in northwestern California. IAHS Publ. 165, 439–449.Google Scholar
Nolan, K. M. & Marron, D. C. (1995). History, causes, and significance of changes in the channel geometry of Redwood Creek, northwestern California. US Geol. Surv. Prfo. Paper 1454, N1–22.Google Scholar
Normark, W. R. & Reid, J. A. (2003). Extensive deposits on the Pacific Plate from late Pleistocene North American glacial lake outbursts. J. Geol., 111, 617–637.CrossRefGoogle Scholar
Normark, W. R.et al. (1997). Tectonism and turbidites in Escanaba Trough, southern Gorda Ridge (abs.). EOS, 78, F630.Google Scholar
Nouh, M. (2006). Wadi flow in the Arabian Gulf states. Hydrol. Process., 20, 2393–2413.CrossRefGoogle Scholar
Nunes, C. & Augé, J. I. (eds.) (1999). Land-use and Land-cover Change (LUCC) Implementation Strategy: IGBP.
Nutalaya, P., R. N. Yong, T. Chumnankit & S. Buapeng (1996). Land subsidence in Bangkok during 1978–1988. In J. D. Milliman & B. U. Haq (eds.), Sea-level Rise and Coastal Subsidence: Causes, Consequences and Strategies. Kluwer Acad. Publ., Dordrecht, pp. 105–129.CrossRef
O'Connor, J. E. & Grant, G. E. (eds.) (2003). A Peculiar River. Geology, Geomorphology, and Hydrology of the Deschutes River, Oregon. Amer. Geophys. Union, 219 pp.CrossRef
O'Connor, J. E., Grant, G. E. & Costa, J. E. (2002). The geology and geography of floods, in Ancient Floods, Modern Hazards: Principles and Application of Paleoflood Hydrology. Amer. Geophys. Union Water Sci. Appl., 5, pp. 359–385.Google Scholar
O'Grady, D. B. & Syvitski, J. P. M. (2002). Large-scale morphology of Arctic continental slopes: the influence of sediment delivery on slope form, in Glacier-influenced Sedimentation on High-latitude Continental Margins, eds. Dowdeswell, J. A. & Cofaigh, C. O., Geol. Soc. London Spec. Publ. 203, pp. 11–31.Google Scholar
Ogi, M. & Tachibana, Y. (2006). Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge. Geophys. Res. Lett., 33.CrossRefGoogle Scholar
Ohmori, H. (1983). Erosion rates and their relation to vegetation from the viewpoint of world-wide distribution. Bull. Dept. Geogr., University of Tokyo, pp. 77–91.Google Scholar
Oki, T. (1999). The global water cycle, in Global Energy and Water Cycles, eds. Browning, K. A. & Gurney, R. J., Cambridge: Cambridge University Press, pp. 10–29.Google Scholar
Oki, T. & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313, 1068–1072.CrossRefGoogle ScholarPubMed
Olive, L. J. & Rieger, W. A. (1986). Low Australilan sediment yields – a question of inefficient sediment delivery?IAHS Publ. 159, 355–364.Google Scholar
Onda, Y., Dietrich, W. E. & Booker, F. (2008). Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena, 72, 13–20.CrossRefGoogle Scholar
Opperman, J. J.et al. (2009). Sustainable floodplains through large-scale reconnection to rivers. Science, 326, 1487–1488.CrossRef
Owens, P. & Slaymaker, O. (1992). Late Holocene sediment yields in small alpine and subalpine drainage basins, British Columbia. IAHS Publ. 36, 216–219.Google Scholar
Ozturk, F. (1996). Suspended sediment yields of rivers in Turkey. IAHS Publ., 236, 65–71.Google Scholar
Pachur, H.-J. & Kropelin, S. (1987). Wadi Howar: Paleoclimatic evidence from an extinct river system in the southeastern Sahara. Science, 237, 298–300.CrossRefGoogle ScholarPubMed
Page, M. J., Reid, L. M. & Lynn, I. H. (1999). Sediment production from Cyclone Bola landslides Waipaoa catchment. J. Hydrol. N.Z., 38, 289–308.Google Scholar
Page, M. & Trustrum, N. A. (1997). A late Holocene lake sediment record of the erosion response to land use change in a steepland catchment. Z. Geomorphol., 41, 369–392.Google Scholar
Page, M., Trustrum, N. & Gomez, B. (2000). Implications of a century of anthropogenic erosion for future land use in the Gisborne–East Coast region of New Zealand. N. Z. Geogr., 56, 13–24.CrossRefGoogle Scholar
Pahnke, K.et al. (2007). Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones. Paleoceanogr., 22, A4214 doi:10.1029/2007PA001468.CrossRefGoogle Scholar
Palanques, A., Plana, F. & Maldonado, A. (1990). Recent influence of man on the Ebro margin sedimentation system, northwestern Mediterranean Sea. Mar. Geol., 95, 247–263.CrossRefGoogle Scholar
Pano, N. (1992). Dynamic a del litorale Albanese (sintesi delle conoscenze). Proc. 19th AIGI Mtg., G. Land. Publ, Genoa, pp. 3–18.
Pareschi, M. T.et al. (2000). May 5, 1998, debris flows in circum-Vesuvian areas (southern Italy): insights for hazard assessment. Geology, 28, 639–642.2.0.CO;2>CrossRefGoogle Scholar
Parrett, C., Melcher, N. B. & James, R. W. J. (1993). Flood discharges in the upper Mississippi River basin, 1993, U.S. Geol. Surv. Circular 1120-A.Google Scholar
Pasquini, A. I. & Depetris, P. J. (2007). Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: an overview. J. Hydrol., 333, 385–399.CrossRefGoogle Scholar
Patchineelam, S. M., Kjerfve, B. J. & Gardner, L. R. (1999). A preliminary sediment budget for the Winyah Bay estuary, South Carolina, USA. Mar. Geol., 162, 133–144.CrossRefGoogle Scholar
Pearce, A. J. & Watson, A. (1986). Effects of earthquake induced landslides on sediment budget and transport over a 50-year period. Geology 14, 14, 52–55.2.0.CO;2>CrossRefGoogle Scholar
Peel, M. C. & McMahon, T. A. (2006). Continental runoff – a quality-controlled global runoff data set. Nature, e14–E14.CrossRefGoogle ScholarPubMed
Peel, M. C.et al. (2001). Identification and explanation of continental differences in the variability of annual runoff. J. Hydrol., 250, 224–240.CrossRefGoogle Scholar
Penman, H. L. (1963). Vegetation and hydrology, in Bureau Soils Tech. Comm. 53Commonwealth Agricul. Bureau (Great Britian), p. 124.Google Scholar
Pereira, H. C. (1973). Land Use and Water Resources in Temperate and Tropical Climates, Cambridge: Cambridge University Press.Google Scholar
Peterson, B. J.et al. (2002). Increasing river discharge to the Arctic Ocean. Science, 298, 2171–2173.CrossRefGoogle ScholarPubMed
Petrone, K. C.et al. (2007). The influence of fire and permafrost on sub-arctic stream chemistry during storms. Hydrol. Process., 21, 423–434.CrossRefGoogle Scholar
Pettine, A.et al. (1985). Organic and trophic loads of major Italian rivers, in Transport of Carbon and Minerals in Major World Rivers Pt. 4, eds. Degens, E. T., Kempe, S. & Herrera, R., Hamburg: SCOPE/UNEP, pp. 407–416.Google Scholar
Peucker-Ehrenbrink, B. (2009). Land2Sea database of river drainage basin sizes, annual water discharges, and suspended sediment fluxes. Geochem. Geophys. Geosyst., 10, Q06014 doi:10.1029/2008GC002356.CrossRefGoogle Scholar
Peucker-Ehrenbrink, B. & Miller, M. W. (2003). Quantitative bedrock geology of east and southeast Asia. Geochemistry Geophysics Geosystems, 5 doi:10.1029/2003GC000619.Google Scholar
Phien-wej, N., P. H. Giao & P. Nutalaya (2006). Land subsidence in Bangkok, Thailand. Eng. Geol., 82, 187–201.CrossRef
Phillips, J. D. (1990). Relative importance of factors influencing fluvial soil loss at the global scale. Amer. J. Sci., 290, 547–568.CrossRefGoogle Scholar
Pickup, G. (1980). Hydraulic and sediment modeling studies in environmental impact assesment of a major tropical dam project. Earth Surf. Process., 5, 61–75.CrossRefGoogle Scholar
Pickup, G. (1983). Sedimentation processes in the Purari River upstream of the delta, in The Purari – Tropical Environment of a high rainfall river basin, ed. Petr, T., The Hague: Monographiae Biologicae, pp. 205–225.Google Scholar
Pickup, G., Higgins, R. J. & Warner, R. F. (1981). Erosion and sediment yield in Fly River drainage basins, Papua New Guinea. IAHS Publ. 132, pp. 438–456.
Piégay, H.et al. (2004). Contemporary changes in sediment yield in an alpine mountain basin due to afforestation (the upper Drôme in France). Catena, 55, 183–212.CrossRefGoogle Scholar
Pimentel, D.et al. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 117–1123.CrossRefGoogle ScholarPubMed
Pinet, P. & Souriau, M. (1988). Continental erosion and large-scale relief. Tectonics, 7, 563–582.CrossRefGoogle Scholar
Pitkånen, H. (1994). Eutrophication of the Finnish coastal waters: origin, fate and effects of riverine nutrient fluxes. Publ. Water Environ. Res. Inst. 1994.
Pitlick, J. (1993). Response and recovery of a subalpine stream following a catastrophic flood. Geol. Soc. Amer. Bull., 105, 657–670.2.3.CO;2>CrossRefGoogle Scholar
Pont, D. (1997). Les debits solides du Rhone a proximité de son embouchure donnees récentes (1994–1995). Rev. Geogr. Lyon, 72, 23–33.CrossRefGoogle Scholar
Ponting, C. (1991). A Green History of the World, London: Penguin.Google Scholar
Porter, S. C. & An, Z. (1995). Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375, 305–308.CrossRefGoogle Scholar
Postel, S. & Richter, B. (2003). Rivers for Life. Managing Water for People and Nature, Washington, DC: Island Press.Google Scholar
Postel, S. L., Daily, G. C. & Ehrlich, P. R. (1996). Human appropriation of renewable fresh water. Science, 271, 785.CrossRefGoogle Scholar
Potter, P. E. (1978). Significance and origin of big rivers. J. Geol., 86, 13–33.CrossRefGoogle Scholar
Poulos, S. E. & Collins, M. B. (2002). Fluviatile sediment fluxes to the Mediterranean Sea: a quantitative approach and the influence of dams. Geol. Soc. London Spec. Publ., 191, 227–245.CrossRefGoogle Scholar
Poulos, S. E., Lykousis, V. & Collins, M. B. (1995). Late Quaternary evolution of Amvrakikos Gulf, western Greece. Geo-Mar. Lett., 15, 9–16.CrossRefGoogle Scholar
Poulos, S. E., Collins, B. D. & Evans, G. (1996). Water sediment fluxes of Greek rivers, southeastern Alpine Europe: annual yields, seasonal variability, delta formation and human impact. Z. Geomorphol., 40, 243–261.Google Scholar
Poulos, S. E.et al. (2000). Thermaikos Gulf Coastal System, NW Aegean Sea: an overview of water/sediment fluxes in relation to air–land–ocean interactions and human activities. J. Marine Syst., 25, 47–76.CrossRefGoogle Scholar
Poulos, S. E.et al. (2002). Sediment fluxes and the evolution of a riverine-supplied tectonically-active coastal system: Kyparissiakos Gulf, Ionian Sea (eastern Mediterranean). Geological Society London Special Publications, 191, 247–266.CrossRefGoogle Scholar
Prego, R., Boi, P. & Cobelo, A.-García (2008). The contribution of total suspended solids to the Bay of Biscay by Cantabrian Rivers (northern coast of the Iberian Peninsula). J. Marine Syst., 72, 342–349.CrossRefGoogle Scholar
Probst, J. L. (1992). Geochemie et hydrologie de l'erosion ­continental. Mechanisms, bilan global actuel at fluctuations au cours des 500 millions d'annees. Sci. Géol. Bull., 94, 161.Google Scholar
Probst, J.-L. & Amiotte-Suchet, P. (1992). Fluvial suspended sediment transport and mechanical erosion in the Maghreb (North Africa). Hydrol. Sci. J., 37, 621–637.CrossRefGoogle Scholar
Prowse, T. D. (1993). Suspended sediment concentration during river ice breakup. Can. J. Civil Eng., 20, 872–875.CrossRefGoogle Scholar
Pyne, S. J. (1991). Burning Brush: A Fire History of Australia, New York: Holt.Google Scholar
Qi, S. Z. & Luo, F. (2007). Environmental degradation in the Yellow River delta, Shandong Province, China. Ambio, 36, 610–611.CrossRefGoogle ScholarPubMed
Qian, N. & Dai, D. Z. (1980). The problems of river sedimentation and the present status of research in China, in China Hydraul. Eng. Proc. Int. Symp. River SedimentationBeijing, China: Guanghua Press, pp. 3–39.Google Scholar
Quadrelli, R., Pavan, V. & Molteni, F. (2001). Wintertime variability of Mediterranean precipitation and its links with large-scale circulation anomalies. Clim. Dyn., 17, 457–466.CrossRefGoogle Scholar
Rabalais, N. N. & Turner, R. E. (2001). Hypoxia in the northern Gulf of Mexico: description, causes and change. Coastal Hypoxia: Consequences for Living Resources and Ecosystems, Amer. Geophys. Union Coast. Est. Stud. Ser. 58, pp. 37–48.Google Scholar
Rabalais, N. N.et al. (1998). Consequences of the 1993 Mississippi River flood in the Gulf of Mexico. River Res. Appl., 14, 161–177.3.0.CO;2-J>CrossRefGoogle Scholar
Rabalais, N. N.et al. (2007). Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate and control hypoxia? Estuaries Coasts, 30, 753–772.
Rachold, V.et al. (1996). Sediment transport to the Laptev Sea – hydrology and geochemistry of the Lena River. Polar Res., 15, 183–196.Google Scholar
Rachold, V.et al. (2003). Modern terrigenous organic carbon input to the Arctic Ocean, in The Organic Carbon Cycle in the Arctic Ocean: Present and Past, eds. Stein, R. & MacDonald, R. W., Berlin: Springer Verlag, pp. 33–55.Google Scholar
Rahaman, W.et al. (2009). Climate control on erosion distribution over the Himalaya during the past ~ 100 ka. Geology, 37, 559–562.CrossRefGoogle Scholar
Rajagopalan, B.et al. (2009). Water supply risk on the Colorado River: can management mitigate? Water Res. Resear., 45, W08201, doi:10.1029/2008WR007652.CrossRef
Ramanathan, A. L., Subramanian, V. & Das, B. K. (1996). Sediment and heavy metal accumulation in the Cauvery Basin. Environ. Geol., 27, 155–163.CrossRefGoogle Scholar
Ramankutty, N. & Foley, J. A. (1999). Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 997–1027.CrossRefGoogle Scholar
Ramesh, R. & Subramanian, V. (1993). Geochemical characteristics of the major tropical rivers of India. IAHS Publ. 216, 157–164.Google Scholar
McNally, Rand (1980). Encyclopedia of World Rivers, London: Bison Books Limited.Google Scholar
Rao, K. L. (1979). India's Water Wealth:Orient Longman.Google Scholar
Rao, K. N. (2006). Coastal Morphodynamics and Asymmetric Development of the Godavari Delta: Implications to Facies Architecture and Reservoir Heterogeneity, J. Geol. Soc. India.Google Scholar
Ravichandran, S. (2003). Hydrological influences on the water quality trends in Tamiraparani Basin, South India. Environ. Monit. Assess., 87, 293–309.CrossRefGoogle ScholarPubMed
Raymo, M. E. & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359, 117–122.CrossRefGoogle Scholar
Raymond, M. B. (1999). Geochemistry of small mountainous rivers of Papua New Guinea: local observations and global implications, unpublished MSc Thesis, College of William and Mary.
Reed, L. A., Takita, C. S. & Barton, G. (1997). Loads and yields of nutrients and suspended sediment in the Susquehanna River basin, 1985–89, US Geol. Survey Circular, 17 pp.
,Regional Activity Center for Environment Remote Sensing (RACERS) (1996). Monitoring of Coastal Evolution through Space Remote Sensing, Palermo.
Reid, L. M. & Dunne, T. (1984). Sediment production from forest road surfaces. Water Resour. Res., 20, 1753–1761.CrossRefGoogle Scholar
Reid, L. M. & Dunne, T. (1996). Rapid Evaluation of Sediment Budgets, Reiskirchen: Catena Verlag.Google Scholar
Reid, L. M. & Page, M. J. (2003). Magnitude and frequency of landsliding in a large New Zealand catchment. Geomorph., 49, 71–88.CrossRefGoogle Scholar
Rein, B., Luckge, A. & Sirocko, F. (2004). A major Holocene ENSO anomaly during the Medieval period. Geophys. Res. Lett., 31, L17211 doi:10.1029/2004GL020161.CrossRefGoogle Scholar
Rein, B.et al. (2005). El Niño variability off Peru during the last 20,000 years. Paleoceanogr., 20, PA4003 doi:10.1029/2004PA001099.CrossRefGoogle Scholar
Reiners, P. W.et al. (2003). Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature, 426, 645–647.CrossRefGoogle ScholarPubMed
Reisner, M. (1993). Cadillac Desert, New York, Penguin.Google Scholar
Ren, M.-E. (1992). Human impact on coastal landform and ­sedimentation – the Yellow River example. GeoJournal, 28, 443–448.CrossRefGoogle Scholar
Ren, M.-E. (1995). Anthropogenic effect on the flow and sediment of the Lower Yellow River and its bearing on the evolution of Yellow River delta, China. GeoJournal, 37, 473–478.CrossRefGoogle Scholar
Ren, M.-E. & J. D. Milliman (1996). Effect of sea-level rise and human activity on the Yangtze delta, China. In J. D. Milliman and B. U. Haq (eds.) Sea-level Rise and Coastal Subsidence: Causes Consequences and Strategies. Kluwer Acad. Publ., Dordrecht, pp. 205–214.
Ren, M.-E. & Zhu, X.-M. (1994). Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene. Holocene, 4, 314–320.Google Scholar
Renssen, H. & Knoop, J. M. (2000). A global river routing network for use in hydrological modeling. J. Hydrol., 230, 230–243.CrossRefGoogle Scholar
Renwick, W. H. (1996). Continental-scale reservoir sedimentation patterns in the United States. IAHS Publ. 236, 513–522.Google Scholar
Renwick, W. H.et al. (2005). The role of impoundments in the sediment budget of the conterminous United States. Geomorph., 71, 99–111.CrossRefGoogle Scholar
Transportation, Republic of Korea Ministry of Construction and (2007). Water Resources in Korea, Seoul: Water Resources Bureau, Ministry of Construction and Transportation.Google Scholar
Restrepo, J. D. & Kjerfve, B. J. (2000a). Magdalena River: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J. Hydrol., 235, 137–149.CrossRefGoogle Scholar
Restrepo, J. D. & Kjerve, B. J. (2000b). Water discharge and sediment load from the western slopes of the Colombian Andes, with focus on the Rio San Juan. J. Geol., 108, 17–33.CrossRefGoogle ScholarPubMed
Restrepo, J. D. & López, S. A. (2008). Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America. J. South Amer. Earth. Sci., 25, 1–21.CrossRefGoogle Scholar
Restrepo, J. D. & Syvitski, J. P. M. (2006). Assessing the effect of natural controls and land use change on sediment yield in a major Andean Basin: the Magdalena drainage basin, Colombia. Ambio, 35, 65–74.CrossRefGoogle Scholar
Reuther, A. U.et al. (2006). Constraining the timing of the most recent cataclysmic flood event from ice-dammed lakes in the Russian Altai Mountains, Siberia, using cosmogenic in situ 10Be. Geology, 34, 913–916.CrossRefGoogle Scholar
Revelle, R. R. & Waggoner, P. E. (1983). Effect of a carbon dioxide-induced climatic change on water supplies in the western United States, in Carbon Dioxide Assessment Committee Changing Climate. Washington, DC: National Academy of Science, pp. 419–432.Google Scholar
Reynoldson, T. B.et al. (2005). Fraser River Basin, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 696–732.Google Scholar
Richards, J. F. (1990). Land transformation, in The Earth as Transformed by Human Action, eds. Turner, B. L., II, et al., Cambridge: Cambridge University Press, pp. 163–178.Google Scholar
Richardson, J. S. & Milner, A. M. (2005). Pacific coast rivers of Canada and Alaska, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 734–773.Google Scholar
Riebe, C. S.et al. (2001a). Minimal climatic control on erosion rates in the Sierra Nevada, California. Geology, 29, 447–450.2.0.CO;2>CrossRefGoogle Scholar
Riebe, C. S.et al. (2001b). Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology, 29, 511–514.2.0.CO;2>CrossRefGoogle Scholar
Riggs, H. C. (1977). A Brief Investigation of the Surface Water Hydrology of Yemen Arab Republic, US Geol. Survey Water Supply Paper, 37 pp.
Robertson, D. M. & Roerish, E. D. (1999). Influence of various water quality sampling strategies on load estimates for small streams. Water Resour Res., 35, 3747–3759.CrossRefGoogle Scholar
Robinson, R. A. J.et al. (2007). The Irrawaddy River sediment flux to the Indian Ocean: the original nineteenth-century data revisited. J. Geol., 115, 629–640.CrossRefGoogle Scholar
Robinson, R. S. & Johnsson, M. J. (1997). Chemical and Physical Weathering of Fluvial Sands in an Arctic Environment : Sands of the Sagavanirktok River, North Slope, Alaska. J. Sediment. Res., 67, 560–570.Google Scholar
Rodier, J. A. & Roche, M. (1984). World catalog of maximum obvserved floods. IAHS Publ. 143, 378.Google Scholar
Rondeau, B.et al. (2000). Budget and sources of suspended sediment transported in the St. Lawrence River, Canada. Hydrol. Process., 14, 21–36.3.0.CO;2-7>CrossRefGoogle Scholar
Rooseboom, A. & Harmse, H. J. v. M. (1979). Changes in the sediment load of the Orange River during the period 1929–1969. IAHS Publ., pp. 459–470.
Ropelewski, C. F. & Halpert, M. S. (1989). Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268–284.2.0.CO;2>CrossRefGoogle Scholar
Rosenberg, D. M.et al. (2005). Nelson and Churchill River Basins, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 852–901.Google Scholar
Rossignol-Strick, M.et al. (1982). After the deluge: Mediterranean stagnation and sapropel formation. Nature, 295, 105–110.CrossRefGoogle Scholar
Rothacher, J. (1970). Increases in water yield following clear-cut logging in the Pacific Northwest. Water Resour. Res., 6, 653–658.CrossRefGoogle Scholar
Rothacher, J. (1973). Does harvest in west slope Douglas-fir increase peak flow in small forest streams?US Forest Serv. Res. Paper PNW-163, 13.Google Scholar
Rovira, A., Batalla, R. J. & Sala, M. (2004). Fluvial sediment budget of a Mediterranean river: the lower Tordera (Catalan coastal ranges, NE Spain). Catena, 60, 19–42.CrossRefGoogle Scholar
Rozengurt, M. & Haydock, I. (1993). Freshwater flow diversion and its implications for coastal zone ecosystems. 58th N. Amer. Wildlife Nat. Resour. Conf., pp. 287–295.Google Scholar
Rozin, U. & Schick, A. P. (1996). Land use change, conservation measures and stream channel response in the Mediterranean/semiarid transition zone: Nahal Hoga, southern coastal plain, Israel. IAHS Publ. 236, 417–444.Google Scholar
Russell, A. J.et al. (2006). Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and geomorphology. Geomorph., 75, 33–64.CrossRefGoogle Scholar
Russell, J. M. & Johnson, T. C. (2007). Little Ice Age drought in equatorial Africa: Intertropical Convergence Zone migrations and El Nino-Southern Oscillation variability. Geology, 35, 21–24.CrossRefGoogle Scholar
Russell, J. M., Johnson, T. C. & Talbot, M. R. (2003). A 725-yr cycle in the climate of central Africa during the late Holocene. Geology, 31, 677–680.CrossRefGoogle Scholar
Ryu, J. S., Lee, K. S. & Chang, H. W. (2007). Hydrogeochemical and isotopic investigations of the Han River basin, South Korea. J. Hydrol., 345, 50–60.CrossRefGoogle Scholar
Sabater, F.et al. (1995). The Ter: a Mediterranean river case-study in Spain, in Ecosystems of the World 22: River and Stream Ecosystems, eds. Cushing, C. E., Cummins, K. W. & Mishall, G. W., Amsterdam: Elsevier, pp. 419–438.Google Scholar
Sabater, S.et al. (2009). The Iberian Rivers, in Rivers of Europe, eds. Tockner, K., Robinson, C. T. & Uehlinger, U., Amsterdam: Elsevier, pp. 113–149.Google Scholar
Saito, Y., Yang, Z. & Hori, K. (2001). The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorph., 41, 219–231.CrossRefGoogle Scholar
Salomons, W. & Mook, W. G. (1981). Field observations of the isotopic composition of particulate organic carbon in the southern North Sea and adjacent estuaries. Mar. Geol., 41, 11–20.CrossRefGoogle Scholar
Sandler, A. & Herut, B. (2000). Composition of clays along the continental shelf off Israel: contribution of the Nile versus local sources. Mar. Geol., 167, 339–354.CrossRefGoogle Scholar
Savage, S. M. (1974). Mechanism of fire-induced water repellency in soil. Soil Sci. Soc. Am. Proc., 38, 653–657.CrossRefGoogle Scholar
Savini, J. & Krammerer, J. C. (1961). Urban growth and the water regime. US Geol. Surv. Water Supply Paper 1591A.
Scharler, U. M. & Baird, D. (2003). The influence of catchment management on salinity, nutrient stochiometry and phytoplankton biomass of Eastern Cape estuaries, South Africa. Estuar. Coast. Shelf Sci., 56, 735–748.CrossRefGoogle Scholar
Scheepers, A. C. T. & Rust, I. C. (1999). The Uniab River Fan: an unusual alluvial fan on the hyper-arid Skeleton Coast, Namibia. Varieties of Fluvial Form:Chichester, John Wiley & Sons, pp. 273–294.Google Scholar
Schettini, C. A. F. (2002). Near-bed sediment transport in the Itajaí-Açu River estuary, southern Brazil, in Fine sediment dynamics in the marine environment. Elsevier, Amsterdam, eds. Winterwerp, J. C. & Kranenburg, C. S., Amsterdam: Elsevier, pp. 499–512.Google Scholar
Scheumann, W. & Schiffler, M. (eds.) (1998). Water in the Middle East, Berlin: Springer-Verlag.CrossRef
Schick, A. P. (1988). Hydrologic aspects of floods in extreme arid environments, in Flood Geomorphology, eds. Baker, V. R., Kochel, R. C. & Patton, P. C., Chichester: John Wiley & Sons, pp. 189–203.Google Scholar
Schick, A. P. & Lekach, J. (1987). A high magnitude flood in the Sinai Desert, in Catastrophic Floods, eds. Mayer, L. & Nash, D., Boston: Allen & Unwin, pp. 381–410.Google Scholar
Schimmelmann, A.et al. (1998). A large California flood and correlative global climatic events 400 years ago. Quat. Res., 49, 51–61.CrossRefGoogle Scholar
Schmidt, K. M. & Montgomery, D. R. (1995). Limits to relief. Science, 270, 617–620.CrossRefGoogle Scholar
Schulze, R. E. (2004). River basin responses to global change and anthropogenic impacts, in Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System, eds. Kabat, P.et al., New York: Springer Verlag, pp. 339–374.Google Scholar
Schulze, R. E.et al. (2004). Case study 3: Modelling the impacts of land-use and climate change on hydrological responses in the mixed underdeveloped/developed Mgeni catchment, South Africa, inVegetation, Water, Humans and the Climate: A New Perspective on an Interactive System. IGBP, pp. 441–453.CrossRefGoogle Scholar
Schumm, S. A. (1963). The disparity between present rates of denudation and orogeny. US Geol Sur. Prof. Paper 454-H.Google Scholar
Schumm, S. A. (1977). The Fluvial System, New York: Wiley-Interscience.Google Scholar
Schumm, S. A. (2005). River Variability and Complexity, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schumm, S. (2007). Rivers and humans: unintended consequences, in Large Rivers: Geomorphology and Management, ed. Gupta, A., John Wiley, pp. 517–533.Google Scholar
Schumm, S. A., Dumont, J. F. & Holbrook, J. M. (2002). Active Tectonics and Alluvial Rivers, Cambridge: Cambridge University Press.Google Scholar
Schumm, S. A. & Hadley, R. F. (1961). Progress in the application of landform analysis in studies of semiarid erosion, US Geological Survey, 14 pp.
Schumm, S. A. & Rea, D. K. (1995). Sediment yield from disturbed earth systems. Geology, 23, 391.2.3.CO;2>CrossRefGoogle Scholar
Seager, R.et al. (2007). Blueprints for Medieval hydroclimate. Quat. Sci. Rev., 26, 2322–2336.CrossRefGoogle Scholar
Serrano Suarez, B. E. (2004). The Sinú river delta on the northwestern Caribbean coast of Colombia: bay infilling associated with delta development. J. South Amer. Earth. Sci., 16, 623–631.CrossRefGoogle Scholar
Sestini, G. (1991). The implications of climatic changes for the Nile Delta, in Climatic Change and the Mediterranean: Environmental and Societal Impacts of Climatic Change and Sea-level Rise in the Mediterranean Region, eds. Jeftic, L., Milliman, J. D. & Sestini, G., Edward Arnold Publishers, p. 673.Google Scholar
Sestini, G. (1992). Implications of climatic changes for the Po delta and Venice lagoon, in Climatic Change and the Mediterranean, eds. Leftick, L. & Milliman, J. D., London: Arnold, pp. 428–494.Google Scholar
Shabbar, A. (2006). The impact of El Nino-Southern Oscillation on the Canadian climate. Adv. Geos., 6, 149–153.CrossRefGoogle Scholar
Shady, A. M.et al. (1996). Management and Development of Major Rivers, Oxford University Press.Google Scholar
Shahin, M. (2002). Hydrology and Water Resources of Africa, Dordrecht: Kluwer Academic Pub.Google Scholar
Shahin, M. (2007). Water Resources and Hydrometeorology of the Arab Region, Dordrecht: Kluwer Academic Pub.Google Scholar
Shakun, J. D. & J. Shaman (2009). Tropical origins of North and South Pacific decadal variability. Geophys. Res. Lett., 36, L19711, doi:10.1029/2009GL040113.CrossRef
Shaman, J & E. Tziperman (2005). The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the south Asian monsoons. J. Climate, 18, 2067–2079.CrossRef
Sharma, K. D. (1997). Assessing the impact of overgrazing on soil erosion in arid regions at a range of spatial scales. IAHS Publ. 245, 119–123.Google Scholar
Sherman, D. J., Barron, K. M. & Ellis, J. T. (2002). Retention of beach sands by dams and debris basins in southern California. J. Coast. Res., 36, 662–674.CrossRefGoogle Scholar
Shiklomanov, A. I., Lammers, R. B. & Vörösmarty, C. J. (2002). Widespread decline in hydrological monitoring threatens pan-Arctic research. EOS, 83, 13,16.CrossRefGoogle Scholar
Shiklomanov, I. A. & Rodda, J. C. (eds.) (2003). World Water Resources at the Beginning of the 21st Century, Cambridge: Cambridge University Press.
Shiklomanov, I. A. & Skakalsky, B. G. (1994). Studying water, sediment and contaminant runoff of Siberian rivers: ­modern status and prospects. Arctic Research of the United States, 8, 295–306.Google Scholar
Shiklomanov, A. I.et al. (2006). Cold region river discharge ­uncertainty – estimates from large Russian rivers. J. Hydrol., 326, 231–256.CrossRefGoogle Scholar
Shukla, J., Nobre, C. & Sellers, P. (1990). Amazon deforestation and climate change. Science, 247, 1322.CrossRefGoogle ScholarPubMed
Siakeu, J.et al. (2004). Change in riverine suspended sediment concentration in central Japan in response to late 20th ­century human activities. Catena, 55, 231–254.CrossRefGoogle Scholar
Sidle, R. C., Pearce, A. J. & O'Loughlin, C. L. (1985). Hillslope Stability and Land Use, American Geophysical Union Water Resource Monograph.CrossRefGoogle Scholar
Sidle, R. C. & Wu, W.-M. (2001). Evaluation of the temporal and spatial impacts of timber harvesting on landslide occurrence, in Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas, eds. Wigmosta, M. S. & Burges, S. J., American Geophysical Union, pp. 179–193.Google Scholar
Sidorchuk, A. Y. & Golosov, V. N. (2003). Erosion and sedimentation on the Russian Plain, II: the history of erosion and sedimentation during the period of intensive agriculture. Hydrol. Process., 17, 3347–3358.CrossRefGoogle Scholar
Siebert, S.et al. (2005). Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci., 2, 1299–1327.CrossRefGoogle Scholar
Sigurdsson, H., Vikingsson, S. & I. Kaldal (1998). Course of events of the jokulhlaup on Skeidararsandur in November, 1996. EOS, 79, S13.Google Scholar
Silins, U.et al. (2008). Impacts of wildfire and post-fire salvage logging on sediment transfer in the Oldman watershed, Alberta, Canada. IAHS Publ. 325, 510–515.Google Scholar
Simeoni, U. & Bondesan, M. (1997). The role and responsibility of man in the evolution of the Italian Adriatic coast. Bull. Inst. Oceanog., Monaco Spec., 18, 111–132.Google Scholar
Simeoni, U., Pano, N. & Ciavola, P. (1997). The coastline of Albania: morphology, evolution and coastal management issues. Bull. Inst. Oceanog., Monac Spec., 18, 151–168.Google Scholar
Simmons, C. E. (1988). Sediment characteristics of North Carolina streams, US Geol. Surv. Open-File Report, 130 pp.
Singh, G. (1991). Environmental changes in southern Asia during the Holocene, in Current Perspectives in Palynological Research, ed. Chanda, S., New Dehli: Today and Tomorrow Printers & Publishers, pp. 277–296.Google Scholar
Sirocko, F.et al. (1991). Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the last glaciation. Quat. Res., 36, 72–93.CrossRefGoogle Scholar
Sisson, T. W., Vallance, J.W. and Pringle, P.T. (2001). Progress made in understanding Mount Rainer's hazards. EOS, 82, 113–120.CrossRefGoogle Scholar
Sistemas de Informacion, Geografica, S.A. de C.V. (2007). Proyecto Mexico Informacion Cartografica Digital: Mexico City.
Skoulikidis, N. T. (2009). The environmental state of rivers in the Balkans – a review within the DPSIR framework. Sci. Tot. Environ., 407, 2501–2516.CrossRefGoogle ScholarPubMed
Sloan, J., Miller, J. R. & Lancaster, N. (2001). Response and recovery of the Eel River, California, and its tributaries to floods in 1955, 1964, and 1997. Geomorph., 36, 129–154.CrossRefGoogle Scholar
Smith, L. C.et al. (2002). Geomorphic effectiveness, sandur development, and the pattern of landscape responses during jokulhlaups: Skeidararsandur, southeastern Iceland. Geomorph. 44, 95–113.Google Scholar
Smith, S. E. & Abdel-Kader, A. (1988). Coastal erosion along the Egyptian delta. J. Coast. Res., 4, 245–255.Google Scholar
Smith, S. V.et al. (2001). Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem. Cycles, 15, 697–707.CrossRefGoogle Scholar
Smock, L. A., Wright, A. B. & Benke, A. C. (2005). Atlantic coast rivers of the southeastern United States, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 71–122.Google Scholar
Snorrason, Á.et al. (2002). November 1996 jokulhlaup on Skeioararsandur outwash plain, Iceland. Int. Assoc. Sed., 55–66.Google Scholar
Snoussi, M. (1988). Nature, estimetion et comparison des flux de matierres issus des bassins versants de l'Adour (France), du Sebon, de l'Oum-Er-Rbia et du Souss (Maroc). Impact du climat sur les apports fluviatiles a l'Ocean, Bordeaux, France: Memoire de l'Institut du Geologie du Bassin d'Aquitaine.
Snoussi, M., Jouanneau, J. M. & Latouche, C. (1990). Flux de matieres issues de bassins versants de zones semi-arid [Bassins du sebon et du sons Maroc], importance dans le bilan global des apports d'origine cintinentale pavenant a l'Ocean Mondial. J. Afr. Earth Sci., 11, 43–53.CrossRefGoogle Scholar
Snoussi, M., Haïda, S. & Imassi, S. (2002). Effects of the construction of dams on the water and sediment fluxes of the Moulouya and the Sebou Rivers, Morocco. Reg. Environ. Change, 3, 5–12.CrossRefGoogle Scholar
Solomon, S. (ed.). Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Sommerfield, C. K. & Nittrouer, C. A. (1999). Modern accumulation rates and a sediment budget for the Eel shelf: a flood-dominated depositional environment. Mar. Geol., 154, 227–241.CrossRefGoogle Scholar
Sorman, A. U. & Abdulrazzak, M. J. (1987). Regional flood discharge analysis southwest region of the Kingdom of Saudi Arabia, in Regional Flood Frequency Analysis, ed. Singh, V. P., D. Reidel Publ. Co., pp. 11–25.Google Scholar
Soulsby, C., Tetzlaff, D. & Hrachowitz, M. (2009). Tracers and transit times: windows for viewing catchment scale storage?Hydrol. Process., 23, 3503 – 3507.CrossRefGoogle Scholar
Souza, W. F. L. & Knoppers, B. (2003). Fluxos de Água e Sedimentos a Costa Leste do Brasil: Relações Entre a Tipologia e as Pressões Antrópicas. Geochim. Brasil., 17, 57–74.Google Scholar
Souza, M. F. L.et al. (2003). Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Estuar. Coast. Shelf Sci., 57, 843–858.CrossRefGoogle Scholar
Entsiklopediya, Sovetskaya (1989). (In Russian.) Moscow.
Sridhar, A. (2007). A mid-late Holocene flood record from the alluvial reach of the Mahi River, Western India. Catena, 70, 330–339.CrossRefGoogle Scholar
Stahle, D. W.et al. (2009). Early 21st-century drought in Mexico. EOS, 90, 89–90.CrossRefGoogle Scholar
Stallard, R. F. (1985). River chemistry, geology, geomorphology, and soils in the Amazon and Orinoco basins, in The Chemistry of Weathering, ed. Drever, J. I., NATO, Kluwer Academic Press, pp. 293–316.Google Scholar
Stallard, R. F. (1995a). Relating chemical and physical erosion, in Chemical weathering rates of silicate minerals, eds. White, A. F. & Brantley, S. L., Mineral. Soc. Amer., pp. 543–564.Google Scholar
Stallard, R. F. (1995b). Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Ann. Rev. Earth Pl. Sci., 12, 11–39.CrossRefGoogle Scholar
Stallard, R. F. (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochem. Cycles, 12, 231–257.CrossRefGoogle Scholar
Stallard, R. F. & Edmond, J. M. (1983). Geochemistry of the Amazon. 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res., 86, 9844–9858.CrossRefGoogle Scholar
Stanford, J. A.et al. (2005). Columbia River basin, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 590–653.Google Scholar
Stanley, D. J. (1996). Nile delta: extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Mar. Geol., 129, 189–195.CrossRefGoogle Scholar
Stanley, D. J. & Warne, A. G. (1993). Nile Delta: recent geological evolution and human impact. Science, 260, 628–634.CrossRefGoogle ScholarPubMed
Starkel, L. (1972). The role of catastrophic rainfall in the shaping of the relief of the lower Himalaya (Darjeeling Hills). Geogr. Pol., 21, 103–147.Google Scholar
Staub, J. R. & Gastaldo, R. A. (2003). Late Quaternary sedimentation and peat development in the Rajang River delta, Sarawak, East Malaysia, in Tropical Deltas of Southeast Asia - Sedimentology, Stratigraphy, and Petroleum Geology, eds. Sidi, F. H., Nummedal, D., Imbert, P., et al., Tulsa, OK: SEPM, pp. 71–87.Google Scholar
Staub, J. R., Among, H. L. & Gastaldo, R. A. (2000). Seasonal sediment transport and deposition in the Rajang River delta, Sarawak, East Malaysia. Sediment. Geol., 133, 249–264.CrossRefGoogle Scholar
Staubwasser, M.et al. (2002). South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and middle Holocene. Paleoceanogr., 17, DOI 10.1029/2000PA000608.CrossRefGoogle Scholar
Steinke, S. et al. (2006). On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22,000 years. Quat. Sci. Rev., 25, 1475–1488.CrossRef
Steffen, W.et al. (2003). Global Change and the Earth System, Berlin: Springer-Verlag, 332 pp.Google Scholar
Stevens, M. A. (1994). The Citanduy, Indonesia – one tough river, in The Variability of Large Alluvial Rivers, eds. Schumm, S. A. & Winkley, B. R., New York: ACE Press, pp. 201–219.Google Scholar
Stewart, B. W., Capo, R. C. & Chadwick, O. A. (2001). Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochim. Cosmochim. Acta, 65, 1087–1099.CrossRefGoogle Scholar
Stock, J. & Dietrich, W. E. (2003). Valley incision by debris flows: evidence of a topographic signature. Water Resour. Res., 39, 1089.CrossRefGoogle Scholar
Stover, S. C. & Montgomery, D. R. (2001). Channel change and flooding, Skokomish River, Washington. J. Hydrol., 243, 272–286.CrossRefGoogle Scholar
Stow, D. W. & Chang, H. H. (1987). Magnitude–frequency relationship of coastal sand delivery by a southern California stream. Geo-Mar. Lett., 7, 217–222.CrossRefGoogle Scholar
Street-Perrott, F. A. & Perrott, R. A. (1990). Abrupt climate fluctuations in the tropics: the influence of North Atlantic circulation. Nature, 343, 607–612.CrossRefGoogle Scholar
Subramanian, V. (1987). Environmental geochemistry of Indian river basins: a review. J. Geol. Soc. India, 29, 205–220.Google Scholar
Subramanian, V. (1993). Sediment load of Indian rivers. Current Science (Bangalore), 64, 928–930.Google Scholar
Subramanian, V. (2001). Water Quantity - Quality Perspectives in South Asia, Surrey: Kingston Intern. Publ.Google Scholar
Subramanian, V. (ed.) (2004). Dialogue on River Links and Diversions: ENVIS Centre in Biogeochemistry, Jawaharlal Nehru University.
Summerfield, M. A. & Hulton, N. J. (1994). Natural controls on fluvial denudation rates in major drainage. J. Geophys. Res., 99, 13 871–13 883.CrossRefGoogle Scholar
Sun, Y.et al. (2007). How often will it rain?J. Climate, 20, 4801–4818.CrossRefGoogle Scholar
Sutcliffe, J. V. & Parks, Y. P. (1999). The hydrology of the Nile. IAHS Spec. Publ. 45.Google Scholar
Sutton, R. T. & Hodson, D. L. R. (2005). Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115–118.CrossRefGoogle ScholarPubMed
Suwa, X. & Y. Yamakoshi (1999).
Swanson, F. J., Harr, R. D. & Fredriksen, R. L. (1979). Geomor­phology and hydrology in the H. J. Andrews Experimental Forest, western Cascades, Corvallis, Oregon: Oregon Forestry Service Lab, 19.
Swanson, K. M. et al. (2008). Sediment load and floodplain deposition rates: comparison of Strickland and Fly rivers, Papua New Guinea. J. Geophys. Res., 113, F01S02, doi:10.1029/2006JF000623, 2008.CrossRef
Swantson, D. N., Siemer, R. R. & Janda, R. J. (1995). Rate and mechanics of progressive hillslope failure in the Redwood Creek basin, northwestern California, inUS Geol. Surv. Profess. Paper 1454, E1–16.Google Scholar
(Swedish) Yearbook of Environmental Statistics, 1986–1987, Stockholm, Sweden.
Syed, F. S.et al. (2006). Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor. Appl. Climatol., 86, 147–160.CrossRefGoogle Scholar
Syvitski, J. P. M. (1992).
Syvitski, J. P. M. & Alcott, J. M. (1993). GRAIN2: predictions of particle size seaward of river mouths. Comput. Geosci., 19, 399–446.Google Scholar
Syvitski, J. P. & Alcott, J. M. (1995). RIVER3: Simulation of river discharge and sediment transport. Comput. Geosci., 21, 89–151.CrossRefGoogle Scholar
Syvitski, J. P. M. & Farrow, G. E. (1983). Structures and processes in bayhead deltas: Knight and Butte Inlets, British Columbia. Sediment. Geol., 36, 217–244.CrossRefGoogle Scholar
Syvitski, J. P. M. & Kettner, A. J. (2007). On the flux of water and sediment into the Northern Adriatic Sea. Cont. Shelf Res., 27, 296–308.CrossRefGoogle Scholar
Syvitski, J. P. M. & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol., 115, 1–19.CrossRefGoogle Scholar
Syvitski, J. P. M. & Morehead, M. D. (1999). Estimating river-sediment discharge to the ocean: application to the Eel margin northern California. Mar. Geol., 154, 13–28.CrossRefGoogle Scholar
Syvitski, J. P. M. & Saito, Y. (2007). Morphodynamics of deltas under the influence of humans. Global Planet. Change, 57, 261–282.CrossRefGoogle Scholar
Syvitski, J. P.et al. (2000). Estimating fluvial sediment transport: The rating parameters. Water Resour. Res., 36, 2747–2760.CrossRefGoogle Scholar
Syvitski, J. P.et al. (2003). Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment. Geol., 162, 5–24.CrossRefGoogle Scholar
Syvitski, J. P. M.et al. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376.CrossRefGoogle ScholarPubMed
Syvitski, J. P. M. et al. (2009).
Takeuchi, K., Jayawardena, A. & Takahasi, Y. (eds.) (1995). Catalogue of Rivers for Southeast Asia and the Pacific, Vol. 1, UNESCO-IHP Regional Steering Committee (RSC) for Southeast Asia and the Pacific.
Talwani, X. (1997).
Tanabe, S.et al. (2006). Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam. Sediment. Geol., 187, 29–61.CrossRefGoogle Scholar
Tanzania Hydrological Yearbook (1967). Port Washington, New York, Water Information Center, INC.
Teller, J. T. (1987). Proglacial lakes, in North America and Adjacent Oceans during the Last Deglaciation, eds. Ruddiman, W. F. & Wright, H. E., Jr., Geo. Soc. Amer., pp. 39–69.Google Scholar
Teller, J. T. & Leverington, X. (2004).
Teller, J. T. & Thorliefson, L. H. (1987). Catastrophic flooding into the Great Lakes from Lake Agassiz, in Catastrophic Flooding, eds. Mayer, L. & Nash, D., Boston: Allen & Unwin, pp. 121–138.Google Scholar
Templet, P. H. & Meyer-Arendt, K. J. (1988). Louisiana wetland loss: a regional water management approach to the problem. Environ. Manag., 12, 181–192.CrossRefGoogle Scholar
Center, Terrain Analysis (1995a). Water Resources Areal Appraisal, Belize, Alexandria, VA: US Army Topographic Engineering Center.Google Scholar
Center, Terrain Analysis (1995b). Water Resources Areal Appraisal, Costa Rica, Alexandria, VA: US Army Topographic Engineering Center.Google Scholar
Center, Terrain Analysis (1995c). Water Resources Areal Appraisal, El Salvador, Alexandria, VA: US Army Topographic Engineering Center.Google Scholar
Center, Terrain Analysis (1995d). Water Resources Areal Appraisal, Guatemala, Alexandria, VA: US Army Topographic Engineering Center.Google Scholar
Thanh, T. D.et al. (2004). Regimes of human and climate impacts on coastal changes in Vietnam. Reg. Environ. Change, 4, 49–62.CrossRefGoogle Scholar
Thieler, E. R.et al. (2007). A catastrophic meltwater flood event and the formation of the Hudson Shelf Valley. Palaeogeog., Palaeoclimatol., Palaeoecol., 246, 120–136.CrossRefGoogle Scholar
Thomas, M. F. & Thorp, M. B. (1995). Geomorphic response to rapid climatic and hydrologic change during the late Pleistocene and early Holocene in the humid and sub-humid tropics. Quat. Sci. Rev., 14, 193–207.CrossRefGoogle Scholar
Thompson, C. J., Takken, I. & Croke, J. (2008). Hydrological and sedimentological connectivity of unsealed roads. IAHS Publ. 325, 524–531.Google Scholar
Thompson, D. W. J. & Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300.CrossRefGoogle Scholar
Thompson, D. W. J. & Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016.2.0.CO;2>CrossRefGoogle Scholar
Thompson, D. W. J. & Wallace, J. M. (2001). Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89.CrossRefGoogle ScholarPubMed
Thoms, M. C. & Sheldon, F. (2000). Water resource development and hydrological change in a large dryland river: the Barwon–Darling River, Australia. J. Hydrol., 228, 10–21.CrossRefGoogle Scholar
Thornton, S. F. & McManus, J. (1994). Application of organic and nitrogen stable isotope and C/N ratios as source indications of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar. Coast. Shelf Sci., 38, 219–333.CrossRefGoogle Scholar
Thorp, J. H., Lamberti, G. A. & Casper, A. F. (2005). St. Lawrence River Basin, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, pp. 982–1028.Google Scholar
,The Times World Atlas (1999).
Tipper, E. T.et al. (2006). The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry. Geochim. Cosmochim. Acta, 70, 2737–2754.CrossRefGoogle Scholar
Tiveront, J. (1960). Debit solide des cours d'eau en Algerie et en Tunisie. IAHS Publ. 53, 26–42.Google Scholar
Tiwari, V. W., J. Wahr & S. Swenson (2009). Dwindling groundwater resources in northern Inda, from satellite gravity observations. Geophys. Res. Lett., 36, L18401, doi:10.1029/2009GL039401.CrossRef
Todd, M. C. & Washington, R. (2003). Climate variability in Central Equatorial African: evidence of extra-tropical influence. CLIVAR Exchanges, 27, 4.Google Scholar
Tomasson, H. (1991). Glacifluvial transport and erosion, in Arctic Hydrology: Present and Future Tasks, ed. N. N. C. f. Hydrology, Norweg. Nat. Comm. Hydrol. Report. 223, pp. 27–36.
Tomasson, H. (1997). Catastrophic floods in Iceland. IAHS Publ. 271, 121–126.
Tomasson, H., Palsson, S. & Ingolfsson, P. (1980). Comparison of sediment load transport in the Skeioara jokulhlaups in 1972 and 1976. Jokull, 30, 21–32.Google Scholar
Tootle, G. A. & Piechota, T. C. (2006). Relationships between Pacific and Atlantic ocean sea surface temperatures and US streamflow variability. Water Resour. Res., 42, W07441 doi:10.1029/2005WR004184.CrossRefGoogle Scholar
Torab, M. & Azab, M. (2007). Modern shoreline changes along the Nile Delta coast as an impact of the construction of the Aswan High Dam. Geographia Technica, 2, 69–76.Google Scholar
Tranter, M. (2004). Gechemical weathering in glacial and proglacial environments, in Treatise on Geochemistry, v.5, eds. Holland, H. D. & Turekian, K. K., Oxford: Pergamon Press, pp. 189–205.Google Scholar
Trefry, J. H.et al. (2003). Trace metals in sediments near offshore oil exploration and production sites in the Alaskan Arctic. Environ. Geol., 45, 149–160.CrossRefGoogle Scholar
Trenberth, K. E.et al. (2007). Chapter 3: Observations: surface and atmospheric climate change, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Solomon, S.et al., Cambridge: Cambridge University Press, pp. 235–336.Google Scholar
Trimble, S. W. (1977). The fallacy of stream equilibrium in contemporary denudation studies. Amer. J. Sci., 277, 876–887.CrossRefGoogle Scholar
Trimble, S. W. (1983). A sediment budget for Coon Creek basin in the Driftless area, Wisconsin. Amer. J. Sci., 283, 454–474.CrossRefGoogle Scholar
Trimble, S. W. (1999). Decreased rates of alluvial sediment storage in the Coon Creek Basin, Wisconsin, 1975–93. Science, 285, 1244.CrossRefGoogle Scholar
Trimble, S. W. & Crosson, P. (2000). US soil erosion rates – myth and reality. Science, 289, 248–250.CrossRefGoogle Scholar
Trimble, S. W. & Mendel, A. C. (1995). The cow as a geomorphic agent – a critical review. Geomorph., 13, 233–253.CrossRefGoogle Scholar
Troeh, F. & Thompson, L. M. (1993). Soils and Soil Fertility, New York: Oxford University Press.Google Scholar
Troeh, F. R., Hobbs, J. A. & Donahue, R. L. (1999). Soil and Water Conservation, Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Trustrum, N. A.et al. (1999). Sediment production storage and output: the relative role of large magnitude events in steepland catchments. Z. Geomorphol., 115, 71–86.Google Scholar
Tudhope, A. W.et al. (2001). Variability in the El Niño-Southern Oscillation through a glacial–interglacial cycle. Science, 291, 1511–1517.CrossRefGoogle ScholarPubMed
Tuncer, G.et al. (1998). Land-based sources of pollution along the Black Sea coast of Turkey: concentrations and annual loads to the Black Sea. Mar. Pollut. Bull., 36, 409–423.CrossRefGoogle Scholar
Turner, B. L.et al. (eds.) (1990). The Earth as Transformed by Human Action, Cambridge:Cambridge University Press.
Turner, R. E. & Rabalais, N. N. (1991). Changes in Mississippi River water quality this century. BioScience, 41, 140–147.CrossRefGoogle Scholar
Uchida, T.et al. (2000). Sediment yield on a devastated hill in southern China; effects of microbiotic crust on erosion process. Geomorph., 32, 129–145.CrossRefGoogle Scholar
Umbal, J. V. (1997). Five years of lahars at Pinatubo Volcano: declining but still potentially lethal hazards. J. Geol. Soc. Philippines, 52, 35813.Google Scholar
,UNEP/MAP/MED_POL (2003). Riverine Transport of Water, Sediments and Pollutants to the Mediterranean Sea, in MAP Technical Reports Series No 141, UNEP/MAP, Athens, p. 111.Google Scholar
,UNESCO (1967). Discharge of selected rivers of the world, Paris: UNESCOGoogle Scholar
,UNESCO (1969). Discharge of Selected Rivers of the World, Paris: UNESCO.Google Scholar
,UNESCO (1971). Discharge of selected rivers of the world. Studies and Reports in Hydrology, 194 pp.
,UNESCO (1995). Discharge of Selected Rivers of Africa, Paris: UNESCO.Google Scholar
,UNESCO/UNEP (1982).
,UNESCO (WORRI) (1978). World register of rivers discharging into the oceans, Unpubl. ms.
Urey, H. L. (1952). The Planets: Their Origin and Development, New Haven: Yale University Press.Google Scholar
Uriarte, A.et al. (2004). Sediment supply, transport and deposition: contemporary and Late Quaternary evolution, in Oceanography and Marine Environment of the Basque Country, eds. Borja, A. & Collins, M. B., Amsterdam: Elsevier Oceanography Series 70, pp. 97–132.Google Scholar
,US Geological Survey (USGS) (1994). Water Resources Data for Alaska, Water Year 1994, USGS-WRD-AK-00–1.
Leeden, F. (1975). Water Resources of the World: Selected Statistics, New York: Water Information Center.Google Scholar
Weijden, C. H. & Middelburg, J. J. (1989). Hydrogeochemistry of the river Rhine: long term and seasonal variability, elemental budgets, base levels and pollution. Water Res., 23, 1247–1266.CrossRefGoogle Scholar
Vanacker, V.et al. (2007). Restoring natural vegetation reverts mountain erosion to natural levels. Geology, 35, 303–306.CrossRefGoogle Scholar
Vanden Bossche, J.-P. & Bernacsek, G. M. (1991). Source book for the inland fishery resources of Africa, CIFA Technical Paper 18.
Varga, S., Bruk, S. & Babic-Mladenovic, M. (1989). Sedimentation in the Danube and tributaries upstream from the iron Gates (Djerdap) Dam, in Fourth International Symposium on River Sedimentation, Beijing, China: Ocean Press, pp. 111–118.Google Scholar
Varis, O. & Vakkilainen, P. (2001). China's 8 challenges to water resources management in the first quarter of the 21st century. Geomorph., 41, 93–104.CrossRefGoogle Scholar
Vatne, G., B.et al. (1995). Glaciofluvial sediment delivery from two dynamically different polythermal glaciers, northern Spitsbergen (abs), in IGS International Symposium on Glacial Erosion and Sedimentation.
Vega, A. J., Sui, C.-H. & K.- Lau, M. (1998). Interannual to interdecadal variations of the regionalized surface climate of the United States and relationships to generalized flow parameters. Phys. Geogr., 19, 271–291.Google Scholar
Vera, C. & Silvestri, G. (2009). Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim. Dyn., 32, 1003–1014.CrossRefGoogle Scholar
Verdon, D. C.et al. (2004). Multidecadal variability of rainfall and streamflow: Eastern Australia. Water Resour. Res., 40, W10201 doi:10.1029/204WR003234.CrossRefGoogle Scholar
Verschuren, D., Laird, K. R. & Cumming, B. F. (2000). Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature, 403, 410–414.CrossRefGoogle ScholarPubMed
Vezzoli, G., Garzanti, E. & Monguzzi, S. (2004). Erosion in the Western Alps (Dora Baltea basin) 1. Quantifying sediment provenance. Sediment. Geol., 171, 227–246.Google Scholar
Vincent, P. (2008). Saudi Arabia: an Environmental Overview, London: Taylor and Francis.CrossRefGoogle Scholar
Vink, R. J., Behrendt, H. & Salomons, W. (1999). Point and diffuse source analysis of heavy metals in the Elbe drainage area: comparing heavy metal emissions with transported river loads. Hydrobiologia, 410, 307–314.CrossRefGoogle Scholar
Visser, F.et al. (2002). Quantifying sediment sources in lowlying sugarcane land: a sediment budget approach. IAHS Publ. 276, 169–175.Google Scholar
Viviroli, D.et al. (2007). Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, doi:10.1029/2006WR005653.CrossRefGoogle Scholar
Vogt, C. (1997). Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes. Rep. Polar Res, 251, 309.Google Scholar
Huene, R. & Scholl, D. W. (1991). Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys., 29.Google Scholar
Rad, U.et al. (1999a). A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian sea. Quat. Res., 51, 39–53.Google Scholar
Rad, U.et al. (1999b). Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30000 years documented in laminated sediments off Pakistan. Paleogeog. Paleoclimatol. Paleoceanogr., 152, 129–161.Google Scholar
Voorhis, A. D.et al. (1983). The estuarine character of the Gulf of Nicoya, an embayment on the Pacific coast of Central America. Hydrobiologia, 99, 225–237.CrossRefGoogle Scholar
Vörösmarty, C. J., Fekete, B. M. & Tucker, B. A. (1996a). Global River Discharge Database (RivDIS v1.0), Vol. 3: Europe. International Hydrological Programme, UNESCO: Paris.
Vörösmarty, C. J., Fekete, B. M. & Tucker, B. A. (1996b). Global River Discharge Database (RivDIS v1.0), Vol. 4: North America. International Hydrological Programme, UNESCO: Paris.
Vörösmarty, C. J., Fekete, B. M. & Tucker, B. A. (1996c). Global River Discharge Database (RivDIS v1.0), Vol. 5: South America. International Hydrological Programme, UNESCO: Paris.
Vörösmarty, C. J., Fekete, B. M. & Tucker, B. A. (1996d). Global River Discharge Database (RivDIS v1.0), Vol. 1: Africa. International Hydrological Programme, UNESCO: Paris.
Vörösmarty, C. J., Fekete, B. M. & Tucker, B. A. (1996e). Global River Discharge Database (RivDIS v1.0), Vol. 2: Asia. International Hydrological Programme, UNESCO: Paris.
Vörösmarty, C. J. & Meybeck, M. (2004). Responses of continental aquatic systems at the global scale: new paradigms, new methods, in Vegetation, Water, Humans and the Cliamte, eds. Kabat, P., Claussen, M., Dirmeyer, P. A., et al., Heidelberg: Springer, pp. 375–413.Google Scholar
Vörösmarty, C. J. & Sahagian, D. (2000). Anthropogenic disturbance of the terrestrial water cycle. BioScience, 50, 753–765.CrossRefGoogle Scholar
Vörösmarty, C. J.et al. (1997a). The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26, 210–219.Google Scholar
Vörösmarty, C. J.et al. (1997b). The potential impact of neo-castorization of sediment transport by the global network of rivers. IAHS Publ., 245, 261–273.Google Scholar
Vörösmarty, C. J.et al. (2000). Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution. J. Hydrol., 237, 17–39.CrossRefGoogle Scholar
Vörösmarty, C. J.et al. (2001). Global water data: a newly endangered species. Eos. Trans. AGU, 82, 54–58.CrossRefGoogle Scholar
Vörösmarty, C. J.et al. (2003). Anthropogenic sediment retention: major global-scale impact from the population of registered impoundments. Global Planet. Change, 39, 169–190.CrossRefGoogle Scholar
VÖrÖsmarty, C. J. et al. (2004). Humans transofrming the global water system. EOS, 85, 509–512.CrossRef
Waananen, A. O. (1969). Floods of January and February 1969 in central and southern California. US Geol. Surv. Open File Report, 223 pp.
Waananen, A. O., Harris, D. D. & Williams, R. C. (1970). Floods of December 1964 and January 1965 in the Far Western States. Part 2. Streamflow and Sediment Data. US Geol. Surv. Water-Supply Paper 1866-B, 861 pp.Google Scholar
Wahby, S. K. & Bishara, N. F. (1981). The effect of the river Nile on Mediterranean water, before and after the construction of the high dam at Aswan, in River Input to the Ocean Systems (RIOS)UNESCO, pp. 311–318.Google Scholar
Wainwright, J. & Thornes, J. B. (2004). Environmental Issues in the Mediterranean. Processes and Perspectives from the Past and Present, London: Routledge.Google Scholar
Waisanen, P. J. & Bliss, N. B. (2002). Changes in population and agricultural land in conterminous United States counties, 1790 to 1997. Global Biogeochem. Cycles, 16, 1137.CrossRefGoogle Scholar
Waitt, R. B., Jr. et al. (1983). Eruption-triggered avalanche, flood, and lahar at Mount St. Helens – Effects of winter snowpack. Science, 221, 1394–1396.CrossRefGoogle ScholarPubMed
Wakatsuki, T. & Rasyidin, A. (1992). Rates of weathering and soil formation. Geoderma, 52, 251–263.CrossRefGoogle Scholar
Wallace, I. G. (2009). Components of precipitation and temperature anomalies and change associated with modes of the Southern Hemisphere. Int. J. Climatol., 29, 809–826.CrossRef
Walling, D. E. (1978). Reliability considerations in the evaluation and analysis of river loads. Z. Geomorphol. Suppl., 29, 29–42.Google Scholar
Walling, D. E. (1985). The sediment yields of African rivers. IAHS Publ. 144, 265–283.Google Scholar
Walling, D. E. (1997). The response of sediment yields to environmental change. IAHS Publ. 245, 77–89.Google Scholar
Walling, D. E. (1999). Linking land use erosion and sediment yields in river basins. Hydrobiologia, 410, 223–240.CrossRefGoogle Scholar
Walling, D. E. (2006). Human impact on land–ocean sediment transfer by the world's rivers. Geomorph., 79, 192–216.CrossRefGoogle Scholar
Walling, D. E. (2008). The changing sediment loads of the world's rivers. IAHS Publ. 325, 323–338.Google Scholar
Walling, D. E. & Fang, D. (2003). Recent trends in the suspended sediment loads of the world's rivers. Global Planet. Change, 39, 111–126.CrossRefGoogle Scholar
Walling, D. E. & He, Q. (1999). Improved models for estimating soil erosion rates from Cesium-137 measurements. J. Environ. Qual., 28, 611–622.CrossRefGoogle Scholar
Walling, D. E. & Webb, B. W. (1981). The reliability of suspended sediment load data. IAHS Publ. 133, 177–194.Google Scholar
Walling, D. E. & Webb, B. W. (1983). Patterns of sediment yield, in Background to Paleohydrology, ed. Gregory, K. J., Chichester: John Wiley & Sons, pp. 69–100.Google Scholar
Walling, D. E. & Webb, B. W. (1988). The reliability of rating curve estimates of suspended sediment yield: some further comments. IAHS Publ. 174, 337–350.Google Scholar
Walling, D. E. & Webb, B. W. (1996). Erosion and sediment yield: a global overview. IAHS Publ. 236, 3–19.Google Scholar
Walling, D. E., Webb, B. W. & Woodward, J. C. (1992). Monitoring suspended sediment concentration in discharge from regulated lakes in glacial deposits. IAHS Publ. 210, 269–278.Google Scholar
Walsh, K. (2004). Tropical cyclones and climate change: unresolved issues. Climate Res., 27, 77–83.CrossRef
Walsh, G. & Vigneault, Y. (1986). Analysis of water quality of the rivers of the north shore of the Gulf of St. Lawrence in relation to acidification processes. Rapp. Tech. Can. Sci. Halieut. Aquat., 1540, 118.Google Scholar
Wang, H.et al. (2006). Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: connections to impacts from ENSO events and dams. Global Planet. Change, 50, 212–225.CrossRefGoogle Scholar
Wang, H.et al. (2007). Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): impacts of climate change and human activities. Global Planet. Change, 57, 331–354.CrossRefGoogle Scholar
Wang, J. J. & Lu, X. X. (2008). Influence of the changing environment on sediment loads of the lower Mekong River. IAHS Publ. 325, 612–615.Google Scholar
Wang, Y., Ren, M.-E. & Syvitski, J. P. M. (1998). Sediment transport and terrigenous fluxes, in The Sea, v. 10, The Global Coastal Ocean: Processes and Methods, eds. Brink, K. & Robinson, A. R., Harvard University Press.Google Scholar
Wang, Z.-S. (1992). Meteorological conditions associated with severe regional debris flows in China. IAHS Publ. 209, 325–328.Google Scholar
Wanner, X.et al. (2008). Mid- to late Holocene climate change: an overview, Quat. Sci. Rev., 27, 1791–1828.CrossRef
Ward, G. M., Harris, P. M. & Ward, A. K. (2005). Gulf Coast Rivers of the Southeastern United States, in Rivers of North America, eds. Benke, A. C. & Cushing, C. E., Amsterdam: Elsevier, 124–178.Google Scholar
Ward, P. R. B. (1980). Sediment transport and reservoir siltation formula for Zimbabwe-Rhodesia. Die Siviele Ingenieur, Suid-Afrika, 9–15.Google Scholar
Warrick, J. A. & Farnsworth, K. L. (2009). Dispersal of river sediment in the Southern California Bight, in Earth Science in the Urban Ocean: The Southern California Continental Borderland, eds. Lee, H. J. & Normark, W. R., Geol. Soc. Amer. Spec. Paper 454, pp. 53–68.
Warrick, J. A. & Milliman, J. D. (2003). Hyperpycnal sediment discharge from semiarid southern California rivers: Implications for coastal sediment budgets. Geology, 31, 781–784.CrossRefGoogle Scholar
Warrick, J. A.et al. (2008). Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river. Cont. Shelf Res., 28, 991–1009.CrossRefGoogle Scholar
Wasson, R. J., Olive, L. L. & Rosewall, C. J. (1996). Rates of erosion and sediment transport in Australia. IAHS Publ. 236, 139–148.Google Scholar
Agency, Water Resources (1992). Hydrologic Yearbook of Taiwan, Republic of China,1991.
(Taiwan), Water Resources Planning Commission (1984). Hydrological yearbook of Taiwan, Republic of China: Ministry of Economic Affairs.Google Scholar
Watson, R. T. (ed.) (1996). Climate Change 1995; Impacts, Adaptations and Mitigation, Cambridge:Cambridge University Press.
Watterson, I. G. (2009). Components of precipitation and temperature anomalies and change associated with modes of the Southern Hemisphere. Int. J. Climatol., 29.CrossRefGoogle Scholar
Waylen, P. R. (1995). Global hydrology in relation to palaeohydrological change, in Global Palaeohydrology, eds. Gregory, K. J. & Starkel, L., Chichester: John Wiley, pp. 61–86.Google Scholar
Waylen, P. R. & Caviedes, C. N. (1987). El Niño and annual floods in coastal Peru, in Catastrophic Flooding, eds. Mayer, L. & Nash, D., Boston: Allen & Unwin, pp. 57–77.Google Scholar
Waythomas, C. F. & Williams, G. P. (1988). Sediment yield and spurious correlation – toward a better portrayal of the annual suspended sediment load of rivers. Geomorph., 1, 309–316.CrossRefGoogle Scholar
Wells, J. T. (1996). The lower Mississippi River delta, in ­Sea-level Rise and Coastal Subsidence, eds. Milliman, J. D. & Haq, B. U., Dordrecht: Kluwer Acad. Publ., pp. 281–311.Google Scholar
Wells, J. T., Chinburg, S. J. & Coleman, J. M. (1984). The Atchafalaya River delta: generic analysis of delta development, Vicksburg, MS: Waterways Experiment Station, Hydraulics Lab, 89 pp.
Wells, J. T. & Coleman, J. M. (1987). Wetland loss and the subdelta life cycle. Estuar. Coast. Shelf Sci., 25, 111–125.CrossRefGoogle Scholar
Wheatcroft, R. A. & Sommerfield, C. K. (2005). River sediment flux and shelf sediment accumulation rates on the Pacific Northwest margin. Cont. Shelf Res., 25, 311–332 10.1016/j.csr.2004.10.001.CrossRefGoogle Scholar
Whitaker, A. C., Sato, H. & Sugiyama, H. (2008). Changing suspended sediment dynamics due to extreme flood events in a small pluvial-nival system in northern Japan. IAHS Publ. 325, 192–199.Google Scholar
White, A. F. (2004). Natural weathering rates of silicate minerals, in Treatise on Geochemistry, v. 5, eds. Holland, H. D. & Turekian, K. K., Oxford: Pergamon Press, pp. 133–168.Google Scholar
White, A. F. & Blum, A. E. (1995). Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta, 59, 1729–1747.CrossRefGoogle Scholar
White, G. F. (1988). The environmental effects of the High Dam at Aswan. Environment, 30, 5–40.Google Scholar
White, S. M. (1992). The influence of tropical cyclones as soil eroding and sediment transporting events. An example from the Philippines. IAHS Publ. 192, 259–269.Google Scholar
White, S. M. (1996). Erosion, sediment delivery and sediment yield patterns in the Philippines. IAHS Publ. 236, 233–240.Google Scholar
Wilkinson, B. H. & McElroy, B. J. (2007). The impact of humans on continental erosion and sedimentation. Geol. Soc. Amer. Bull., 119, 140–156.CrossRefGoogle Scholar
Williams, M. (2003). Deforesting the Earth: From Prehistory to Global Crisis, University of Chicago Press.Google Scholar
Williams, M. A. J. (1985). Pleistocene aridity in tropical Africa, Australia and Asia, in Environmental Change and Tropical Geomorphology, eds. Douglas, I. & Spencer, T., London: George Allen & Unwin Publ. Ltd, pp. 219–233.Google Scholar
Williams, M. R. & Melack, J. M. (1997). Effects of prescribed burning and drought on the solute chemistry of mixed-conifer forest streams of the Sierra Nevada, California. Biogeochem., 39, 225–253.CrossRefGoogle Scholar
Willis, R. (1971). In Water Resources of the World: Selected Statistics, ed. Leeden, F., New York: Water Information Center.Google Scholar
Wilmot, R. D. & Collins, M. B. (1981). Contemporary fluvial sediment supply to the Wash. Int. Assoc. Sedimentol. Spec. Publ. 5, 99–110.Google Scholar
Wilson, A. & Iseri, K. T. (1969). River discharges to the sea from the shores of the conterminous Unites States, Alaska and Puerto Rico, US Geol. Survey Open-File Report, 2 pp.
Wilson, C. J. (1999). Effects of logging and fire on runoff and erosion on highly erodible grantic soils in Tasmania. Water Resour. Res., 35, 3531–3546.CrossRefGoogle Scholar
Wilson, L. (1973). Variations in mean annual sediment yield as a function of mean annual precipitation. Amer. J. Sci., 273, 335–349.CrossRefGoogle Scholar
Winchester, S. (2008). The Man Who Loved China. Harper Perennial, New York. 316 pp.
Winkley, B. R. (1994). Response of the Lower Mississippi River to flood control and navigation improvement, in The Variability of Large Alluvial Rivers, eds. Schumm, S. A. & Winkley, B. R., New York: American Soc. Civil Eng., pp. 45–74.Google Scholar
Winterwerp, J. C., Borst, W. G. & Vries, M. B. (2005). Pilot study on the erosion and rehabilitation of a mangrove mud coast. J. Coast. Res., 55, 223–230.CrossRefGoogle Scholar
Wohl, E. (2006). Human impacts to mountain streams. Geomorph., 79, 217–248.CrossRefGoogle Scholar
Wolfe, M. D. & Williams, J. W. (1986). Rates of landsliding as impacted by timber management activities in northwestern California. Bull. Assoc. Eng. Geol., 23, 53–60.Google Scholar
Wolman, M. G. (1967). A cycle of sedimentation and erosion in urban river channels. Geog. Ann. Ser. A Phys. Geog., pp. 385–395.CrossRefGoogle Scholar
Wolman, M. G.et al. (1990). The riverscape, in Surface Water Hydrology, eds. Wolman, M. G. & Riggs, H. C., Geol. Soc. Amer., pp. 281–328.CrossRefGoogle Scholar
Wolman, M. G. & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. J. Geol., 68, 54–74.CrossRefGoogle Scholar
Wolman, M. G. & Schick, A. P. (1967). Effects of construction on fluvial sediment, urban and suburban areas of Maryland. Water Resour. Res., 3, 451–464.CrossRefGoogle Scholar
Woodhouse, C. A., Gray, S. T. & Meko, D. M. (2006). Updated streamflow reconstructions for the Upper Colorado River basin. Water Resour. Res., 42, W05415 doi:10.1029/2005WR004455.CrossRefGoogle Scholar
Woodroffe, C. D.et al. (2003). Mid-late Holocene El Niño variability in the equatorial Pacific from coral microatolls. Geophys. Res. Lett. 30.CrossRef
Woodward, J. C. (1995). Patterns of erosion and suspended sediment yield in Mediterranean river basins, in Sediment and Water Quality in River Catchments, eds. I. Foster, D. L., Gurnell, A. M. & Webb, B. W., Chichester: John Wiley & Sons Ltd, pp. 365–389.Google Scholar
Woodward, J. C.et al. (2007). The Nile: evolution, Quaternary river environments and material fluxes, in Large Rivers: Geomorphology and Management, ed. Gupta, A., John Wiley, pp. 261–292.Google Scholar
,World Wildlife Fund (2007). (http://www.wwf.org)
Wright, K.et al. (1990). Logging effects on streamflow at Caspar Creek in northwest California. Water Resour. Res., 26, 1657–1667.Google Scholar
Wright, L. D., Thom, B. G. & Higgins, R. J. (1980). Wave influences on River-mouth depositional process: Examples from Australia and Papua New Guinea. Est. Coast. Mar. Sci., 11, 263–277.CrossRefGoogle Scholar
Wright, S. A. & D. H. Schoellhamer (2004). Trends in the sediment yield of the Sacramento River, California, ­1957–2001. San Francisco Estuary and Watershed Science (online serial), 2 (2), article 2.CrossRef
Wu, X. D. (1992). Dendroclimatic studies in China, in Climate since AD 1500, eds. Bradley, R. S. & Jones, P. D., London: Routledge, pp. 432–445.Google Scholar
Xia, D. X., Wu, S. Y. & Yu, Z. (1993). Changes of the Yellow River since the last glacial age. Mar. Geol and Quat. Geol., 13, 83–88.Google Scholar
Xiong, Y., Zhang, J.-Z.andLiu, E.-B. (1985). The hydrology of China's rivers. Geojournal, 10, 173–181.CrossRefGoogle Scholar
Xu, J. (1994). A study of the accumulation rate of the lower Yellow River in the past 10,000 years. IAHS Publ. 224, 421–429.Google Scholar
Xu, J. (2003). Sedimentation rates in the lower Yellow River over the past 2300 years as influenced by human activities and climate change. Hydrol. Process., 17, 3359–3371.CrossRefGoogle Scholar
Xu, J. (2004). A study of anthropogenic seasonal rivers in China. Catena, 55, 17–32.CrossRefGoogle Scholar
Xu, K. H. & Milliman, J. D. (2009). Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorph., 104, 276–283.CrossRefGoogle Scholar
Xu, K. H.et al. (2006). Yangtze sediment decline partly from Three Gorges Dam. EOS, 87, 185.CrossRefGoogle Scholar
Xu, K. H.et al. (2007). Climatic and anthropogenic impacts on water and sediment discharges from the Yangtze River (Changjiang), 1950–2005, in Large Rivers: Geomorphology and Management, ed. Gupta, A., Chichester: John Wiley, pp. 609–626.Google Scholar
Xu, Z. X., Chen, Y. N. & Li, J. Y. (2004). Impact of climate change on water resources in the Tarim River basin. Water Resour. Manag., 18, 439–458.CrossRefGoogle Scholar
Yang, Y.-h. & F. Tian (2009). Abrupt change of runoff and its major driving factors in Haihe River catchment. China. J. Hydrol., 374, 373–383.CrossRef
Yang, S. L., Zhang, J. & Zhu, J. (2002). Impact of dams on Yangtze River and the influences of human activities. J. Hydrol., 263, 56–71.CrossRefGoogle Scholar
Yang, S. L.et al. (2005). Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response. J. Geophys. Res., 110, F03006, doi:10.1029/2004JF000271.CrossRefGoogle Scholar
Yang, S.L. et al. (2006). Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophys. Res. Lett. 33, DOI 10.1029/2005GL025507).CrossRefGoogle Scholar
Yang, S.L. et al. (2011). 50,000 dams later: erosion of the Yangtze River and its delta. Global Planet. Change, in press.Google Scholar
Yang, Z. S.et al. (1998). The Yellow River's water and sediment discharge decreasing steadily. EOS, 79, 589–592.CrossRefGoogle Scholar
Yang, Z. S.et al. (2006). Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour. Res., 42, W04407.CrossRefGoogle Scholar
Yang, Z.et al. (2007). Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River. Geophys. Res. Lett., 34, L10401, doi:10.1029/2007GL029472.CrossRefGoogle Scholar
Young, R. A. (1995). Coping with a severe sustained drought on the Colorado River: introduction and overview. Water Resour. Res., 31, 779–788.
Zachos, J.et al. (2001). Trends rhythms and abberations in global climate 65 Ma to present. Science, 292, 686–693.CrossRefGoogle Scholar
Zebidi, H. (ed.) (1998). Water: a looming crisis?, Paris: UNESCO.
Zekster, I. S. & Dzhamalov, R. G. (1988). Role of ground water in the hydrologic cycle and its continental water balance, Paris: UNESCO IHP-II Project 2.3, 133 pp.Google Scholar
Zekster, I. S. & Loaiciga, H. A. (1993). Groundwater fluxes in the global hydrologic cycle: past, present and future. J. Hydrol., 144, 405–427.Google Scholar
Zhang, J. (1994). Biogeochemistry of Trace Metals from Chinese River-Estuary systems: An overview. Dept Marine Chem., Ocean Univ., Qingdao, 29 p.Google Scholar
Zhang, J.et al. (1992). Transport of heavy metals towards the China sea: a preliminary study and compaison. Marine Geochem., 40, 161–178.Google Scholar
Zhang, J.et al. (1994). Eco-social impact and chemical regimes of large Chinese rivers – a short discussion. Water Res., 28, 609–617.CrossRefGoogle Scholar
Zhang, J.et al. (1998). Riverine sources and estuarine fates of particulate organic carbon from north China in late summer. Estuar. Coast. Shelf Sci., 46, 439–448.CrossRefGoogle Scholar
Zhang, Q.et al. (2007). Possible influence of ENSO on annual maximum streamflow of the Yangtze River. Chin. J. Hydrol., 333, 265–274.CrossRefGoogle Scholar
Zhang, R. & Delworth, T. L. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712 doi:10.1029/2006GL026267.CrossRefGoogle Scholar
Zhang, Y. G. (1993). Transport of sediment and organic matter in freshwater systems and offshore if China. Mitt. Geol. Geol-Paleont. Inst., Univ. of Hamburg, 64, 243–249.Google Scholar
Zhukinsky, V. N.et al. (1989). Ecosystem of Dnieper-Bug estuary, Kiev: Naukova Dumka.Google Scholar
Zuffa, G. G.et al. (2000). Turbidite megabeds in an oceanic rift valley recording jokulhlaups of late Pleistocene glacial lakes of the western United States. J. Geol., 108, 253–274.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×