Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-05T23:22:18.357Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 October 2010

Patrick H. Diamond
Affiliation:
University of California, San Diego
Sanae-I. Itoh
Affiliation:
Kyushu University, Japan
Kimitaka Itoh
Affiliation:
National Institute for Fusion Science, Toki, Japan
Get access

Summary

The universe abounds with plasma turbulence. Most of the matter that we can observe directly is in the plasma state. Research on plasmas is an active scientific area, motivated by energy research, astrophysics and technology. In nuclear fusion research, studies of confinement of turbulent plasmas have lead to a new era, namely that of the international thermonuclear (fusion) experimental reactor, ITER. In space physics and in astrophysics, numerous data from measurements have been heavily analyzed. In addition, plasmas play important roles in the development of new materials with special industrial applications.

The plasmas that we encounter in research are often far from thermodynamic equilibrium: hence various dynamical behaviours and structures are generated because of that deviation. The deviation is often sufficient for observable mesoscale structures to be generated. Turbulence plays a key role in producing and defining observable structures. An important area of modern science has been recognized in this research field, namely, research on structure formation in turbulent plasmas associated with electromagnetic field evolution and its associated selection rules. Surrounded by increasing and detailed information on plasmas, some unified and distilled understanding of plasma dynamics is indeed necessary – “Knowledge must be developed into understanding”. The understanding of turbulent plasma is a goal for scientific research in plasma physics in the twenty-first century.

The objective of this series on modern plasma physics is to provide the viewpoint and methods which are essential to understanding the phenomena that researchers on plasmas have encountered (and may encounter), i.e., the mutually regulating interaction of strong turbulence and structure formation mechanisms in various strongly non-equilibrium circumstances.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×