Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-29T08:23:31.099Z Has data issue: false hasContentIssue false

Chapter Twenty-Seven - Applications to Relativistic Astrophysical Flows

from Part Five - Applications

Published online by Cambridge University Press:  05 June 2012

T. J. Chung
Affiliation:
University of Alabama, Huntsville
Get access

Summary

General

Relativistic theory is divided into two categories: special relativity and general relativity. In special relativity, we follow Einstein’s postulate establishing the universality of the speed of light, c, relative to any unaccelerated observer, regardless of the motion of the light’s source from the observer. General relativity arises as an extension to special relativity to describe the motion of particles evolving under the presence of gravitational fields. In order to take into account the effect of gravitation, however, we must abandon the Eulerian coordinates used in Newtonian fluid dynamics. Instead, it is necessary to invoke a curvilinear four-dimensional manifold (the spacetime) to represent particle’s trajectories.

Many of the problems encountered in astrophysics are involved in the numerical solution of special or general relativistic fluid dynamics equations. Active research in this subject area has been in progress for the past 40 years. Earlier studies include structure and evolution of stars [Chandrasekhar, 1942; Aller and McLaughlin, 1965, among others]. Black hole accretion flows have been studied extensively as evident from numerous publications [Paczynski and Wiita, 1980; Katz, 1980; Eggum et al., 1988; Hawley et al., 1984a,b; Clarke et al., 1985; Stella and Vietri, 1997; Bromley et al., 1998; Font et al., 1998a,b; Koide et al., 1999; Font et al., 1999]. Some of the recent activities include Gamma ray bursts [Meszaros and Rees, 1993; Sari and Piran, 1998; Fishman and Meegan, 1995; and Panattescu and Meszros, 1998], explosive and jet phenomena [Norman, 1997], and astrophysical turbulence flows and instability [Bulbus and Hawley, 1998].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnowitt, R.Deser, S.Misner, W. 1962 Witten, L.Gravitation: An Introduction to Current ResearchNew YorkWileyGoogle Scholar
Aller, L.McLaughlin, D. B. 1965 Stellar StructureChicagoUniversity of Chicago PressGoogle Scholar
Aloy, M. A.Ibanez, J. M.Marti, J. M.Müller, E. 1999 Genesis: A high-resolution code for three-dimensional relativistic hydrodynamicsAstrophy. J 122 151CrossRefGoogle Scholar
Balsara, D. S. 1994 Riemann solver for relativistic hydrodynamicsJ. Com. Phys 114 284CrossRefGoogle Scholar
Bona, C.Masso, J.Seidel, E.Stela, J. 1995 New formalism for numerical relativityPhys. Rev. Lett 75 600CrossRefGoogle ScholarPubMed
Banyuls, F.Font, J. A.Ibanes, J. M.Msarti, J. M.Miralles, J. A. 1997 Numerical 3 + 1 general relativistic hydrodynamics: a local characteristic approachAstrophys. J 476 221CrossRefGoogle Scholar
Bromley, B. C.Miller, W. A.Pariev, V. I. 1998 The inner edge of the accretion disk around a supermassive black hole N&VNature 391 54CrossRefGoogle Scholar
Bulbus, S. A.Hawley, J. F. 1998 Instability, turbulence, and enhanced transport in accretion disksRev. Mod. Phys 70 1CrossRefGoogle Scholar
Chandrasekhar, S. 1942 Principles of Stellar DynamicsChicagoUniversity of Chicago PressGoogle Scholar
Chung, T. J. 1996 Applied Continuum MechanicsLondonCambridge University PressGoogle Scholar
Chung, T. J. 1999 Transitions and interactions of inviscid/viscous, compressible/incompressible, and laminar/turbulent flowsInt. J. Num. Meth. Fl 31 2233.0.CO;2-U>CrossRefGoogle Scholar
Clarke, D.Karoik, S.Henrikssen, R. N. 1985 Numerical simulation of the growth of thick accretion disksAstrophys. J 58 81CrossRefGoogle Scholar
Dave, R.Dubinski, D. R.Hernquist, L. 1997 Parallel Tree SPHNew Astron 2 277CrossRefGoogle Scholar
Eckert, C. 1940 The thermodynamics of irreversible processesPhys. Rev 58 919CrossRefGoogle Scholar
Eggum, G. E.Coronitti, F. V.Katz, J. I. 1980 Radiation hydrodynamic calculation of super Eddington accretion disksAstrophys. J 330 142CrossRefGoogle Scholar
Fishman, G.Meegan, C. A. 1995 Gamma-ray burstsAnnu. Rev. Astrophys 33 415CrossRefGoogle Scholar
Font, J. A.Ibanez, J. M.Papadopoulos, P. 1998 A horizon adapted approach to the study of relativistic accretion flows onto rotating holesAp. J 507 L67CrossRefGoogle Scholar
Font, J. A.Miller, M.Suen, W. M.Tobias, M. 1998 Three-dimensional numerical general relativistic hydrodynamics I: Formulations, methods, and code testsPhys. Rev. D 61 044011CrossRefGoogle Scholar
Font, J. A.Ibanez, J. M.Papadopoulos, P. 1999 Non-axisymmetric relativistic Bondi-Holyle accretion on to a Kerr black holeMon. Not. R. Astro. Soc 305 920CrossRefGoogle Scholar
Hawley, J. R.Smarr, L. L.Wilson, J. R. 1984 A numerical study of nonspherical black hole accretion. 1. Equations and test problemsAp. J 277 296CrossRefGoogle Scholar
Hawley, J. R.Smarr, L. L.Wilson, J. R. 1984 A numerical study of nonspherical black hole accretion. II. Finite differencing and code calibrationAstrophys. J 55 211CrossRefGoogle Scholar
Katz, J. 1980 Acceleration, radiation, and recession in SS 433Astrophys. J. Lett 236 L127CrossRefGoogle Scholar
Kippenhahn, R.Thomas, H. C. 1970 Stellar RotationSlettebak, D.DordrechtReidelGoogle Scholar
Koide, S.Shibuta, K.Kudoh, T. 1999 Relativistic jet formation from black hole magnetized accretion disks: method, tests, and applications of a general relativistic magetohydrodynamic numerical codeAp. J 522 727CrossRefGoogle Scholar
LeVeque, R. J. 1991 Numerical Methods for Conservation LawBaselBirkhauserGoogle Scholar
Marti, J. M.Ibanez, J. M.Miralles, J. A. 1991 Numerical relativistic hydrodynamicsPhys. Rev D43 3794Google Scholar
Marti, J. M.Muller, E.Font, J. A.Ibanez, J. M.Marquina, A. 1995 Morphology and dynamics of highly supersonic relativistic jetsAstrophys. J. Lett 448 L105CrossRefGoogle Scholar
Marti, J. M.Muller, E.Font, J. A.Ibanez, J. M.Marquina, A. 1997 Ap. J 479 151CrossRef
Meir, D. L. 1999 Multi-dimensional astrophysical strucural and dynamical analysis. I. Development of a non linear finite element approachAstrophys. J 518 788CrossRefGoogle Scholar
Meszaros, P.Rees, M. J. 1993 Relativistic fireballs and their impact on external matter models for cosmological gamma-ray burstsAp. J 405 278CrossRefGoogle Scholar
Miharas, D.Miharas, B. W. 1984 Foundations of Radiation HydrodynamicsNew YorkOxford University PressGoogle Scholar
Misner, C. W.Thorne, K. S.Wheeler, J. A. 1973 GravitationSan FranciscoFreemanGoogle Scholar
Nobuta, K.Hanawa, T. 1999 Jets from time-dependent accretion flows onto a black holeAstrophys. J 510 614CrossRefGoogle Scholar
Norman, M. L. 1997 Computational AstrophysicsClark, D. A.West, M. J.ASPSan FranciscoGoogle Scholar
Paczynski, B.Wiita, P. J. 1980 Thick accretion disks and supercritical luminositiesAstron. Astrophys 88 23Google Scholar
Penattescu, A.Meszaros, P. 1998 Radiative regimes in gamma-ray bursts and afterglowsAp. J 501 772CrossRefGoogle Scholar
Richardson, G. A. 2000
Richardson, G. A.Cassibly, J. T.Chung, T. J.Wu, S. T. 2010 Finite element form of FDV for widely varying flowfildsJ. of Com. Physics 229 149CrossRefGoogle Scholar
Richardson, G. A.Chung, T. J. 2002 Computational relativistic astrophysics using the flowfield-dependent variation theoryAstrophys. J. Suppl. Series 139 539CrossRefGoogle Scholar
Richardson, G. A.Chung, T. J.Karr, G. R.Pendleton, G. N. 1999 494
Roe, P. 1981 Approximate Riemann solvers, parameter vectors, and difference schemesJ. Comp. Phys 43 357CrossRefGoogle Scholar
Sari, R.Piran, T. 1998 Spectra and light curves of gamma-ray burst after glowsAstrophys. J 497 L17CrossRefGoogle Scholar
Stella, L.Vietri, M. 1997 Lense-Thirring precession and quasi-periodic oscillations in low mass x-ray binariesAstrophys. J 492 L59CrossRefGoogle Scholar
Van Leer, B 1974 Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order schemeJ. Comp. Phys 14 361CrossRefGoogle Scholar
Weinberg, S. 1972 Gravitation and Cosmology: Principles and Applications of the General Theory of RelativityNew YorkWileyGoogle Scholar
Wilson, J. R. 1972 Numerical study of fluid flow in a kerr spaceAstrophys. J 173 431CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×