Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T10:01:43.152Z Has data issue: false hasContentIssue false

43 - Effect of topography on soil fertility and water flow in an Ecuadorian lower montane forest

from Part IV - Nutrient dynamics in tropical montane cloud forests

Published online by Cambridge University Press:  03 May 2011

W. Wilcke
Affiliation:
Johannes Gutenberg University, Germany
J. Boy
Affiliation:
Johannes Gutenberg University, Germany
R. Goller
Affiliation:
University of Bayreuth, Germany
K. Fleischbein
Affiliation:
University of Potsdam, Germany
C. Valarezo
Affiliation:
Universidad Nacional de Loja, Ecuador
W. Zech
Affiliation:
University of Bayreuth, Germany
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Tropical montane forests are frequently located on steep slopes with pronounced differences in topographic exposure, related microclimatic conditions and hence in composition and structure of the vegetation over small distances. The objective of this work was to test the hypothesis that topographic position significantly influences soil fertility and water flow in these forests. Soil properties were determined at various topographic positions and water samples of selected ecosystem fluxes analyzed over a 1-year period for oxygen isotopes in three small, steep watersheds under lower montane forest in the Eastern Cordillera of the Andes in southern Ecuador. The soils are subject to lateral material movement (landsliding and solifluction). This, together with the pronounced variation in climatic conditions and vegetation over small distances, resulted in high heterogeneity of soil properties. The pH of the A-horizon ranged between 3.7 and 6.4; concentrations of base metals (calcium, magnesium), sulfur and phosphorus, and trace metals (manganese, zinc) showed enormous spatial variation (coefficient of variation: 358–680% over a surface area of <30 ha). The steepness of the study area and the large contrast in hydraulic conductivities of the organic layer and the mineral soil resulted in a hillslope flow regime dominated by fast lateral flow. During baseflow conditions, δ18O values were similar to that of the sub-soil solution, but rapidly became similar to values in the top-soil solution during rain storms. The chemical composition of stormflows resembled that of the litter leachate. Stormflow had lower pH and higher organic carbon and metal concentrations than did baseflow. […]

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 402 - 409
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balslev, H., and Øllgaard, B. (2002). Mapa de vegetación del sur de Ecuador. In Botánica Austroecuatoriana: Estudios sobre los recursos vegetales en las Provincias de El Oro, Loja y Zamora-Chinchipe, eds. Aguirre, M. Z., Madsen, J. E., Cotton, E., and Balslev, H., pp. 51–64. Quito, Ecuador: Ediciones Abya-Yala.Google Scholar
Barthlott, W., Mutke, J., Rafiqpoor, M. D., Kier, G., and Kreft, H. (2005). Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92 (342): 61–83.Google Scholar
Bendix, J., Rollenbeck, R., Richter, M., Fabian, P., and Emck, P. (2008). Climate. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 63–74. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bogner, C., Engelhardt, S., Zeilinger, J., and Huwe, B. (2008). Visualization and analysis of flow patterns and water flow simulations in disturbed and undisturbed tropical soils. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 403–412. Berlin: Springer-Verlag.Google Scholar
Bonell, M. (2005). Runoff generation in tropical forests. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 314–406. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bonell, M., Barnes, C. J., Grant, C. R., Howard, A., and Burns, J. (1998). Oxygen and hydrogen isotopes in rainfall-runoff studies. In Isotope Tracers in Catchment Hydrology, eds. Kendall, C. and McDonnell, J. J., pp. 347–390. Amsterdam: Elsevier.CrossRefGoogle Scholar
Boy, J., Valarezo, C., and Wilcke, W. (2008). Water flow paths in soil control element exports in an Andean tropical montane forest. European Journal of Soil Science 59: 1209–1227.CrossRefGoogle Scholar
Bruijnzeel, L. A., and Hamilton, L. S. (2000). Decision Time for Cloud Forests, IHP Humid Tropics Programme Series No. 13. Paris: IHP-UNESCO, Amsterdam: IUCN-NL, and Gland, Switcerland: WWF.Google Scholar
Bussmann, R. W., Wilcke, W., and Richter, M. (2008). Landslides as important disturbance regimes: causes and regeneration. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 319–346. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Buttle, J. M., and McDonald, D. J. (2000). Soil macroporosity and infiltration characteristics of a forest podzol. Hydrological Processes 14: 831–848.3.0.CO;2-T>CrossRefGoogle Scholar
Buttle, J. M., and McDonnell, J. (2005). Isotope tracers in catchment hydrology in the humid tropics. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 770–789. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Casper, M. (2002). Die Identifikation hydrologischer Prozesse im Einzugsgebiet des Dür-reychbaches (Nordschwarzwald), Mitteilungen des Instituts für Wasserwirtschaft und Kulturtechnik No 210. Karlsruhe, Germany: University of Karlsruhe.Google Scholar
Cox, S. B., Willig, M. R., and Scatena, F. N. (2002). Variation in nutrient characteristics of surface soils from the Luquillo Experimental Forest of Puerto Rico: a multivariate perspective. Plant and Soil 247: 189–198.CrossRefGoogle Scholar
Crozier, M. J. (1986). Classification of slope movements. In Landslides: Causes, Consequences, and Environment, ed. Crozier, M. J., pp. 3–31. London: Croom Helm.Google Scholar
Elrick, D. E., and Reynolds, W. D. (1992). Infiltration from constant-head well permeameters and infiltrometers. In Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice, Special Publication No. 30, eds. Topp, C. G.et al., pp. 1–24. Madison, WI: Soil Science Society of America.Google Scholar
Elsenbeer, H. (2001). Hydrologic flowpaths in tropical rainforest soilscapes: a review. Hydrological Processes 15: 1751–1759.CrossRefGoogle Scholar
Fleischbein, K., Wilcke, W., Valarezo, C., Zech, W., and Knoblich, K. (2006). Water budgets of three small catchments under montane forest in Ecuador: experimental and modelling approach. Hydrological Processes 20: 2491–2507.CrossRefGoogle Scholar
Förstel, H. (1996). Hydrogen and oxygen isotopes in soil water: use of 18O and D in soil water to study the soil–plant–water system. In Mass Spectrometry of Soils, ed. Boutton, T. W., pp. 285–310. New York: Marcel Dekker.Google Scholar
Frei, E. (1958). Eine Studie über den Zusammenhang zwischen Bodentyp, Klima und Vegetation in Ecuador. Plant and Soil 9: 215–236.CrossRefGoogle Scholar
Genereux, D. P., and Hooper, R. P. (1998). Oxygen and hydrogen isotopes in rainfall-runoff studies. In Isotope Tracers in Catchment Hydrology, eds. Kendall, C. and McDonnell, J. J., pp. 319–346. Amsterdam: Elsevier.CrossRefGoogle Scholar
Gilmour, D. A., Bonell, M., and Cassells, D. S. (1987). The effects of forestation on soil hydraulic properties in the Middle Hills of Nepal: a preliminary assessment. Mountain Research and Development 7: 239–249.CrossRefGoogle Scholar
Goller, R., Wilcke, W., Leng, M., et al. (2005). Tracing water paths through small catchments under a tropical montane rain forest in south Ecuador by an oxygen isotope approach. Journal of Hydrology 308: 67–80.CrossRefGoogle Scholar
Grubb, P. J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8: 83–107.CrossRefGoogle Scholar
Guariguata, M. R. (1990). Landslide disturbance and forest regeneration in the upper Luquillo mountains of Puerto Rico. Journal of Ecology 78: 814–832.CrossRefGoogle Scholar
Guswa, A. J., Rhodes, A. L., and Newell, S. E. (2007). Importance of orographic precipitation to the water resources of Monteverde, Costa Rica. Advances in Water Resources 30: 2098–2112.CrossRefGoogle Scholar
Hartung, J., and Elpelt, B. (1989). Multivariate Statistik. Munich, Germany: Oldenbourg-Verlag.Google Scholar
Henderson, A., Churchill, S. P., and Luteyn, J. L. (1991). Neotropical plant diversity. Nature 351: 21–22.CrossRefGoogle Scholar
Heinrichs, H., Brumsack, H. -J., Loftfield, N., and König, N. (1986). Verbessertes Druckaufschlußsystem für biologische und anorganische Materialien. Zeitschrift für Pflanzenernährung und Bodenkunde 149: 350–353.CrossRefGoogle Scholar
Homeier, J. (2004). Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica, Dissertationes Botanicae No. 391. Berlin: J. Cramer.Google Scholar
Homeier, J., Werner, F. A., Breckle, S. -W., Gradstein, S. R., and Richter, M.. (2008a). Potential vegetation and floristic composition of Andean forests in south Ecuador, with a focus on the RBSF. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 87–100. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Homeier, J., Breckle, S. -W., and Richter, M. (2008b). Gap dynamics in a tropical montane rain forest. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 311–318. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Huwe, B., Zimmermann, B., Zeilinger, J., Quizhpe, M., and Elsenbeer, H. (2008). Gradients and patterns at local, field and catchment scales. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 391–402. Berlin: Springer-Verlag.Google Scholar
Kendall, C., and Caldwell, E. A. (1998). Fundamentals of isotope geochemistry. In Isotope Tracers in Catchment Hydrology, eds. Kendall, C. and McDonnell, J. J., pp. 51–86. Amsterdam: Elsevier.CrossRefGoogle Scholar
Kendall, C., Shanley, J. B., and McDonnell, J. J. (1999). A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt. Journal of Hydrology 219: 188–205.CrossRefGoogle Scholar
Kennedy, V. C., Kendall, C., Zellweger, G. W., Wyerman, T. A., and Avanzino, R. J. (1986). Determination of the components of stormflow using water chemistry and environmental isotopes, Mattole River basin, California. Journal of Hydrology 84: 107–140.CrossRefGoogle Scholar
Kessler, M. (2002). The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits andtopography at different taxonomic levels. Journal of Biogeography 29: 1159–1166.CrossRefGoogle Scholar
Pritchett, W. L. (1979). Properties and Management of Forest Soils. New York: John Wiley.Google Scholar
Rhode, A. (1998). Snowmelt-dominated systems. In Isotope Tracers in Catchment Hydrology, eds. Kendall, C. and McDonnell, J. J., pp. 391–434. Amsterdam: Elsevier.Google Scholar
Scatena, F. N., and Lugo, A. E. (1995). Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico. Geomorphology 13: 199–213.CrossRefGoogle Scholar
Schellekens, J., Scatena, F. N., Bruijnzeel, L. A., et al. (2004). Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest, Puerto Rico. Hydrological Processes 18: 505–530.CrossRefGoogle Scholar
Silver, W. L., Scatena, F. N., Johnson, A. H., Siccama, T. G., and Sanchez, M. J. (1994). Nutrient availability in montane wet tropical forest: spatial patterns and methodological considerations. Plant and Soil 164: 129–145.CrossRefGoogle Scholar
,USDA–NCRS 2003. Keys to Soil Taxonomy, 9th edn. Available at http://soils.usda.gov./technical/classification/tax_keys/keysweb.pdf.
Valencia, R., Cerón, C., Palacios, W., and Sierra, R. (1999). Las formaciones naturales de la Sierra del Ecuador. In Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental, ed. Sierra, R., pp. 79–108. Quito, Ecuador: Proyecto INEFAN/GEF-BIRF.Google Scholar
Wilcke, W., Yasin, S., Valarezo, C., and Zech, W. (2001). Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry 55: 45–72.CrossRefGoogle Scholar
Wilcke, W., Yasin, S., Abramowski, U., Valarezo, C., and Zech, W. (2002). Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. European Journal of Soil Science 53: 15–27.CrossRefGoogle Scholar
Wilcke, W., Valladarez, H., Stoyan, R., et al. (2003). Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 53: 79–95.CrossRefGoogle Scholar
Yasin, S. (2001). Water and Nutrient Dynamics in Microcatchments under Montane Forest in the South Ecuadorian Andes. Bayreuth, Germany: University of Bayreuth.Google Scholar
Zeien, H., and Brümmer, G. W. (1989). Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 59: 505–510.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×