Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-09T16:29:20.088Z Has data issue: false hasContentIssue false

9 - Nitisinone use in hereditary tyrosinemia and alkaptonuria

from SECTION III - UTILIZATION OF ALTERNATIVE PATHWAYS

Published online by Cambridge University Press:  17 November 2010

Jess G. Thoene
Affiliation:
University of Michigan, Ann Arbor
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sakai, K, Kitagawa, T. An atypical case of tyrosinosis (1-para-hyroxyphenyllactic aciduria): I. Clinical and laboratory findings. Jikei Med J. 1957;2:1Google Scholar
Sakai, K, Kitagawa, T. An atypical case of tyrosinosis (1-para-hydroxyphenyllactic aciduria): II. A research on the metabolic block. Jikei Med J. 1957;2:11Google Scholar
Scott, CR. The genetic tyrosinemias. Am J Med Genet Part C. 2006;142:121–126CrossRefGoogle Scholar
King, LS, Trahms, C, Scott, CR. Tyrosinemia type 1 in GeneReviews at GeneTests: Medical Genetics Information Resource [database online; updated October 2008]. Copyright, University of Washington, Seattle. 1997–2007. Available at: http://www.genetests.org
DeBraekeleer, M, Larochelle, J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean. Am J Hum Genet. 1990;47:302–307Google Scholar
Mitchell, GA, Grompe, M, Lambert, M, Tanguay, RM. Hypertyrosinemia. Scriver, C., Beaudet, A, Sly, W., Valle, D., eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edition, McGraw-Hill, 1777–1805, 2001Google Scholar
Mitchell, G, Larochelle, J, Lambert, M, Michaud, J, Grenier, A, Ogier, H, Gauthier, M, Lacroix, J, Vanasse, M, Larbrisseau, A, et al. Neurologic crises in hereditary tyrosinemia. N Engl J Med. 1990;322:432–437CrossRefGoogle ScholarPubMed
Spronsen, FJ, Thomasse, Y, Smit, GPA, Leonard, JV, Clayton, PT, Fidler, V, Berger, R, Heymans, HAS. Hereditary tyrosinemia type I: A new clinical classification with difference in prognosis on dietary treatment. Hepatology. 1994;20:1187–1191CrossRefGoogle ScholarPubMed
Arora, N, Stumper, O, Wright, J, Kelly, DA, McKiernan, PJ. Cardiomyopathy in tyrosinemia type I is common but usually benign. J Inherit Metab Dis. 2006;29:54–57CrossRefGoogle ScholarPubMed
Holme, E, Lindstedt, S. Tyrosinaemia type I and NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione). J Inherit Metab Dis. 1998;21:507–517CrossRefGoogle Scholar
Sze, YK, Dhawan, A, Taylor, RM, Bansal, S, Mieli-Vergani, G, Rela, M, Heaton, N. Pediatric liver transplantation for metabolic liver disease: Experience at King's College Hospital. Transplantation. 2009;87:87–93CrossRefGoogle ScholarPubMed
Kayler, LK, Rasmussen, CS, Dykstra, DM, Punch, JD, Rudich, SM, Magee, JC, Maraschio, MA, Arenas, JD, Campbell, DA, Merion, RM. Liver transplantation in children with metabolic disorders in the United States. Am J Transplant. 2003;3:334–339CrossRefGoogle ScholarPubMed
Mohan, N, McKiernan, P, Preece, MA, Green, A, Buckels, J, Mayer, AD, Kelly, DA. Indications and outcome of liver transplantation in tyrosinaemia type 1. Eur J Pediatr. 1999;158(Suppl 2):S49–S54CrossRefGoogle ScholarPubMed
Allard, P, Grenier, A, Korson, MS, Zytkovicz, TH. Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry: Analysis of succinylacetone extracted from dried blood spots. Clin Biochem. 2004;37:1010–1015CrossRefGoogle ScholarPubMed
Turgeon, C, Magera, MJ, Allard, P, Tortorelli, S, Gavrilov, D, Oglesbee, D, Raymond, K, Rinaldo, P, Matern, D. Combined newborn screening for succinylacetone, amino acids, and acylcarnitine in dried blood spots. Clin Chem. 2008;54:657–664CrossRefGoogle ScholarPubMed
Lindblad, B, Lindstedt, S, Steen, G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci USA. 1977;74:4641–4645CrossRefGoogle ScholarPubMed
Grompe, M. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin Liver Dis. 2001;21:563–571CrossRefGoogle ScholarPubMed
Jorquera, R, Tanguay, RM. The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun. 1997;232:42–48CrossRefGoogle ScholarPubMed
Phaneuf, D, Labelle, Y, Berube, D, Arden, K, Cavenee, W, Gagne, R, Tanguay, RM. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: Assignment of the gene to chromosome 15. Am J Hum Genet. 1991;48:525–535Google ScholarPubMed
,The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff. Available at: http://www.hgmd.cf.ac.uk/ac/index.php
Poudrier, J, St-Louis, M, Lettre, F, Gibson, K, Prevost, C, Larochelle, J, Tanguay, RM. Frequency of the IVS12+5G➔A splice mutation of the fumarylacetoacetate hydrolase gene in carriers of hereditary tyrosinemia in the French Canadian population of Saguenay-Lac-St.-Jean. Prenat Diagn. 1996;16:59–643.0.CO;2-D>CrossRefGoogle ScholarPubMed
Arranz, J, Pinol, F, Kozak, L, Perez-Cerda, C, Cormand, B, Ugarte, M, Riudor, E. Splicing mutations, mainly IVS6–1(G4T), account for 70% of fumarylacetoacetate hydrolase (FAH) gene alterations, including 7 novel mutations, in a survey of 29 tyrosinemia type I patients. Hum Mutat. 2002;20:180–188CrossRef
Elpeleg, ON, Shaag, A, Holme, E, Zughayar, G, Ronen, S, Fisher, D, Hurvitz, H. Mutation analysis of the FAH gene in Israeli patients with tyrosinemia type I. Hum Mutat. 2002;19(1):80–81CrossRefGoogle ScholarPubMed
St-Louis, M, Leclerc, B, Laine, J, Salo, MK, Holmberg, C, Tanguay, RM. Identification of a stop mutation in five Finnish patients suffering from hereditary tyrosinemia type I. Hum Mol Genet. 1994;3:69–72CrossRefGoogle ScholarPubMed
Poudrier, J, Lettre, F, Scriver, CR, Larochelle, J, Tanguay, RM. Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes. Mol Genet Metab. 1998;64:119–125CrossRefGoogle ScholarPubMed
Kvittingen, EA, Rootwelt, H, Berger, R, Brandtzaeg, P. Self-induced correction of the genetic defect in tyrosinaemia type I. J Clin Invest. 1994;94:1657–1661CrossRefGoogle Scholar
Rootwelt, H, Brodtkorb, E, Kvittingen, EA. Identification of a frequent pseudodeficiency mutation in the fumarylacetoacetase gene, with implications for diagnosis of tyrosinemia type 1. Am J Hum Genet. 1994;55:1122–1127Google Scholar
Phornphutkul, C, Introne, WJ, Perry, MB, Bernardini, I, Murphey, M, Fitzpatrick, DL, Anderson, PD, Huizing, M, Anikster, Y, Gerber, LH, Gahl, WA. Natural history of alkaptonuria. N Engl J Med. 2002;347:2111–2121CrossRefGoogle ScholarPubMed
Goicoechea de Jorge, E, Lorda, I, Gallardo, ME, Perez, B, Perez de Ferran, C, Mendoza, H, Rodriguez de Cordoba, S. Alkaptonuria in the Dominican Republic: Identification of the founder AKU mutation and further evidence of mutation hot spots in the HGO gene. J Med Genet. 2002;39:e40CrossRefGoogle ScholarPubMed
Srsen, S, Cisaric, F, Pasztor, L, Harmecko, L. Alkaptonuria in the Trencin district of Czechoslovakia. Am J Med Genet. 1978;2:159–166CrossRefGoogle ScholarPubMed
Perry, MB, Suwannarat, P, Furst, GP, Gahl, WA, Gerber, LH. Musculoskeletal findings and disability in alkaptonuria. J Rheumatol. 2006;33:2280–2285Google ScholarPubMed
Haas, V, Carbasius Weber, EC, Klerk, JBC, Bakker, HD, Smit, GPA, Huijbers, WAR, Duran, M, Poll-The, BT. The success of dietary protein restriction in alkaptonuria patients is age-dependent. J Inherit Metab Dis. 1998;21:791–798CrossRefGoogle ScholarPubMed
Wolff, JA, Barshop, B, Nyhan, WL, Leslie, J, Seegmiller, JE, Gruber, H, Garst, M, Winter, S, Michals, K, Matalon, R. Effects of ascorbic acid in alkaptonuria: Alterations in benzoquinone acetic acid and an ontogenic effect in infancy. Pediatr Res. 1989;26:140–144CrossRefGoogle ScholarPubMed
Spencer, JMF, Maxime, CL, Gibbons, H, Sharp, RJ, Carr, AJ, Athanasou, NA. Arthroplasty for ochronotic arthritis. Acta Orthop Scand. 2004;75:355–358CrossRefGoogle ScholarPubMed
Introne, WJ, Phornphutkul, C, Bernardini, I, McLaughlin, K, Fitzpatrick, D, Gahl, WA. Exacerbation of the ochronosis of alkaptonuria due to renal insufficiency and improvement after renal transplantation. Mol Genet Metab. 2002;77:136–142CrossRefGoogle ScholarPubMed
Kobak, AC, Oder, G, Kobak, S, Argin, M, Inal, V. Ochronotic arthropathy: Disappearance of alkaptonuria after liver transplantation for hepatitis B-related cirrhosis. J Clin Rheumatol. 2005;11:323–325CrossRefGoogle ScholarPubMed
Fernandez-Canon, JM, Granadino, B, Beltran-Valero de Bernabe, D, Renedo, M, Fernandez-Ruiz, E, Penalva, MA, Rodriguez de Cordoba, S. The molecular basis of alkaptonuria. Nature. 1996;14:19–24Google ScholarPubMed
Titus, GP, Mueller, HA, Burgner, J, Rodriguez de Cordoba, S, Penalva, MA, Timm, . Crystal structure of human homogentisate dioxygenase. Nat Struct Biol. 2000;7:542–546.Google ScholarPubMed
Kayser, MA, Introne, W, Gahl, WA. Valle, Alkaptonuria., Beaudet, Vogelstein, Kinzler, Antonarakis, Ballabio, Scriver, Childs, , and Sly, , eds. The Online Metabolic & Molecular Bases of Inherited Disease. Updated November 2007. Available at: http://www.ommbid.com/
Hall, MG, Wilks, MF, Provan, WM, Eksborg, S, Lumholtz, B. Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmacol. 2001;52:169–177CrossRefGoogle ScholarPubMed
Lock, EA, Ellis, MK, Gaskin, P, Robinson, M, Auton, TR, Provan, WM, Smith, LL, Prisbylla, MP, Mutter, LC, Lee, DL. From toxicological problem to therapeutic use: The discovery of the mode of action of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), its toxicology and development as a drug. J Inherit Metab Dis. 1998;21:498–506CrossRefGoogle Scholar
,Swedish Orphan International AB. Orfadin package insert.
Lock, EA, Gaskin, P, Ellis, MK, Provan, WM, Robinson, M, Smith, LL, Prisbylla, MP, Mutter, LC. Tissue distribution of 2-(2-nitro-4-trifluoromethylbenzoyl) cyclohexane-1–3-dione (NTBC): Effect on enzymes involved in tyrosine catabolism and relevance to ocular toxicity in the rat. Toxicol Appl Pharmacol. 1996;141:439–447CrossRefGoogle ScholarPubMed
Szczeciński, P, Lamparska, D, Gryff-Keller, A, Gradowska, W. Identification of 2-[2-nitro-4-(trifluoromethyl)benzoyl]-cyclohexane-1,3-dione metabolites in urine of patients suffering from tyrosinemia type I with the use of 1H and 19F NMR spectroscopy. Acta Biochim Pol. 2008;55:749–752Google ScholarPubMed
Santra, S, Baumann, U. Experience of nitisinone for the pharmacological treatment of hereditary tyrosinaemia type 1. Expert Opin Pharmacother. 2008;9:1229–1236CrossRefGoogle ScholarPubMed
Kavana, M, Moran, GR. Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione. Biochemistry. 2003;42:10238–10245CrossRefGoogle ScholarPubMed
Ellis, MK, Whitfield, AC, Gowans, , Auton, TR, Provan, WM, Lock, EA, Smith, LL. Inhibition of 4-hydroxyphenylpyruvate dioxygenase by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione and 2-(2-chloro-4-methanesulfonylbenzoyl)-cyclohexane-1,3-dione. Toxicol Appl Pharmacol. 1995;133:12–19CrossRefGoogle ScholarPubMed
Lindstedt, S, Holme, E, Lock, EA, Hjalmarson, O, Strandvik, B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992;340:813–817CrossRefGoogle ScholarPubMed
Suwannarat, P, O'Brien, K, Perry, MB, Sebring, N, Bernardini, I, Kaiser-Kupfer, MI, Rubin, BI, Tsilou, E, Gerber, LH, Gahl, WA. Use of nitisinone in patients with alkaptonuria. Metabolism. 2005;54:719–728CrossRefGoogle ScholarPubMed
Ahmad, S, Teckman, JH, Lueder, GT. Corneal opacities associated with NTBC treatment. Am J Ophthalmol. 2002;134:266–268CrossRefGoogle ScholarPubMed
Gissen, P, Preece, MA, Willshaw, HA, McKiernan, PJ. Ophthalmic follow-up of patients with tyrosinaemia type I on NTBC. J Inherit Metab Dis. 2003;26:13–16CrossRefGoogle ScholarPubMed
Masurel-Paulet, A, Poggi-Bach, J, Rolland, MO, Bernard, O, Guffon, N, Dobbelaere, D, Sarles, J, de Baulny, HO, Touati, G. NTBC treatment in tyrosinaemia type I: Long-term outcome in French patients. J Inherit Metab Dis. 2008;31:81–87CrossRefGoogle ScholarPubMed
Spronsen, FJ, Berger, R, Smit, GP, Klerk, JB, Duran, M, Bijleveld, CM, Faassen, H, Slooff, MJ, Heymans, HS. Tyrosinaemia type I: Orthotopic liver transplantation as the only definitive answer to a metabolic as well as an oncological problem. J Inherit Metab Dis. 1989;12(Suppl 2):339–342CrossRefGoogle ScholarPubMed
Holme, E, Lindstedt, S. Nontransplant treatment of tyrosinemia. Clin Liver Dis. 2000;4:805–814CrossRefGoogle ScholarPubMed
Spronsen, FJ, Bijleveld, CM, Maldegem, BT, Wijburg, FA. Hepatocellular carcinoma in hereditary tyrosinemia type I despite 2-(2 nitro-4-3 trifluoro-methylbenzoyl)-1,3-cyclohexanedione treatment. J Pediatr Gastroenterol Nutr. 2005;40:90–93CrossRefGoogle Scholar
Luijerink, MC, Jacobs, SM, Beurden, EA, Koornneef, LP, Klomp, LW, Berger, R, Berg, IE. Extensive changes in liver gene expression induced by hereditary tyrosinemia type I are not normalized by treatment with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC). J Hepatol. 2003;39:901–909CrossRefGoogle Scholar
Koelink, CJ, Hasselt, P, Ploeg, A, Heuvel-Eibrink, MM, Wijburg, FA, Bijleveld, CM, van Spronsen, FJ. Tyrosinemia type I treated by NTBC: How does AFP predict liver cancer?Mol Genet Metab. 2006;89:310–315CrossRefGoogle ScholarPubMed
Santra, S, Preece, MA, Hulton, SA, McKiernan, PJ. Renal tubular function in children with tyrosinaemia type I treated with nitisinone. J Inherit Metab Dis. 2008;31:399–402CrossRefGoogle ScholarPubMed
Schlump, JU, Perot, C, Ketteler, K, Schiff, M, Mayatepek, E, Wendel, U, Spiekerkoetter, U. Severe neurological crisis in a patient with hereditary tyrosinaemia type I after interruption of NTBC treatment. J Inherit Metab Dis. 2008 [Epub ahead of print]
André, N, Roquelaure, B, Jubin, V, Ovaert, C. Successful treatment of severe cardiomyopathy with NTBC in a child with tyrosinaemia type I. J Inherit Metab Dis. 2005;28:103–106CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×