Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-08T14:29:36.490Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 July 2010

Marlyn L. Shelton
Affiliation:
University of California, Davis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Hydroclimatology
Perspectives and Applications
, pp. 383 - 417
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, D. P. and West, G. J. (1983). Temperature and precipitation estimates through the last glacial cycle from Clear Lake, California, pollen data. Science, 219, 168–70.CrossRefGoogle Scholar
Adler, R. F., Huffman, G. J., Chang, A.et al. (2003). The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 1147–67.2.0.CO;2>CrossRefGoogle Scholar
Adler, R. F., Kidd, C., Petty, G., Morissey, M. and Goodman, H. M. (2001). Intercomparison of global precipitation products: the third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 1377–96.2.3.CO;2>CrossRefGoogle Scholar
Akan, A. O. and Houghtalen, R. J. (2003). Urban Hydrology, Hydraulics, and Stormwater Quality: Engineering Applications and Computer Modeling. Hoboken, NJ: John Wiley and Sons.Google Scholar
Allen, M. R. and Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–31.CrossRefGoogle ScholarPubMed
Allen, R. G. (2000). Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol., 229, 27–41.CrossRefGoogle Scholar
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: United Nations Food and Agriculture Organization.Google Scholar
Alley, W. M. (1984). The Palmer drought severity index: limitations and assumptions. J. Climate Appl. Meteor., 23, 1001–9.2.0.CO;2>CrossRefGoogle Scholar
Alley, W. M. (1985). The Palmer drought severity index as a measure of hydrologic drought. Water Resour. Bull., 2, 105–14.CrossRefGoogle Scholar
Ambaum, M. H. P., Hoskins, B. J. and Stephenson, D. B. (2001). Arctic oscillation or North Atlantic oscillation?J. Climate, 14, 3495–507.2.0.CO;2>CrossRefGoogle Scholar
Anctil, F. and Coulibaly, P. (2004). Wavelet analysis of the interannual variability in southern Québec streamflow. J. Climate, 17, 163–73.2.0.CO;2>CrossRefGoogle Scholar
Anderton, S. P., White, S. M. and Alvera, B. (2004). Evaluation of spatial variability in snow water equivalent for a high mountain catchment. Hydrol. Process., 18, 435–53.CrossRefGoogle Scholar
Andrews, D. G. (2000). An Introduction to Atmospheric Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Angell, J. K. (2003). Effect of exclusion of anomalous tropical stations on temperature trends from a 63-station radiosonde network, and comparison with other analyses. J. Climate, 16, 2288–95.CrossRefGoogle Scholar
Angevine, W. M., Senff, C. J. and Westwater, E. R. (2003). Boundary layers: observational techniques – remote. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 271–9.CrossRefGoogle Scholar
Appenzeller, C., Stocker, T. F. and Anklin, M. (1998). North Atlantic oscillation dynamics recorded in Greenland ice cores. Science, 282, 446–9.CrossRefGoogle ScholarPubMed
Argall, P. S. and Sica, R. J. (2003). Lidar: atmospheric sounding introduction. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 1169–76.CrossRefGoogle Scholar
Arnell, N. (1996). Global Warming, River Flows and Water Resources. Chichester: John Wiley and Sons.Google Scholar
Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Allen, P. M. (1999). Continental scale simulation of the hydrologic balance. J. Amer. Water Resour. Assoc., 35, 1037–51.CrossRefGoogle Scholar
Ba, M. B., Ellingson, R. G. and Gruber, A. (2003). Validation of a technique for estimating OLR with the GOES Sounder. J. Atmos. Oceanic Technol., 20, 79–89.2.0.CO;2>CrossRefGoogle Scholar
Bailey, H. P. and Johnson, C. W. (1972). Potential evapotranspiration in relation to annual wave of temperature. Public. Climatol., 25, 4–12.Google Scholar
Bair, E. S. (1995). Hydrogeology. In Environmental Hydrology, ed. Ward, A. D. and Elliot, W. J.. New York, NY: Lewis Publishers, pp. 285–310.Google Scholar
Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol., 9, 479–92.CrossRefGoogle Scholar
Barani, G. A. and Khanjani, M. J. (2002). A large electronic weighing lysimeter system: design and installation. J. Amer. Water Resour. Assoc., 38, 1053–60.CrossRefGoogle Scholar
Barcelo, A., Robert, R. and Coudray, J. (1997). A major rainfall event: the 27 February-5 March 1993 rains on the southeastern slope of Piton de la Fournaise Massif (Reunion Island, southwest Indian Ocean). Mon. Wea. Rev., 125, 3341–6.2.0.CO;2>CrossRefGoogle Scholar
Barnston, A. G. and Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126.2.0.CO;2>CrossRefGoogle Scholar
Barry, R. G. (1969). The world hydrological cycle. In Water, Earth, and Man: A Synthesis of Hydrology, Geomorphology, and Socio-Economic Geography, ed. Chorley, R. J.. London: Methuen and Co. Ltd.Google Scholar
Basist, A., Bell, G. D. and Meentemeyer, V. (1994). Statistical relationships between topography and precipitation patterns. J. Climate, 7, 1305–15.2.0.CO;2>CrossRefGoogle Scholar
Baumgartner, A. and Reichel, E. (1975). The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Run-Off. Lee, R. (translator). Amsterdam: Elsevier Scientific Publishers.Google Scholar
Beaubien, D. J., Bisberg, A. and Beaubien, A. F. (1998). Investigations in pyranometer design. J. Atmos. Oceanic Technol., 15, 677–86.2.0.CO;2>CrossRefGoogle Scholar
Becker, A. (1995). Problems and progress in macroscale hydrological modelling. In Space and Time Scale Variability and Interdependencies in Hydrological Processes, ed. Feddes, R. A.. Cambridge: Cambridge University Press, pp. 135–43.CrossRefGoogle Scholar
Bell, G. D. and Janowiak, J. E. (1995). Atmospheric circulation associated with the midwest floods of 1993. Bull. Amer. Meteor. Soc., 76, 681–95.2.0.CO;2>CrossRefGoogle Scholar
Beringer, J. and Tapper, N. (2002). Surface energy exchanges and interactions with thunderstorms during the Maritime Continent Thunderstorm Experiment (MCTEX). J. Geophys. Res., 107, 4552, doi:10.1029/2001JD001431.CrossRefGoogle Scholar
Beven, K. (1997). Topmodel: a critique. Hydrol. Process., 11, 1069–85.3.0.CO;2-O>CrossRefGoogle Scholar
Beyrich, F., Bruin, H. A. R., Meijninger, W. M. L., Schipper, J. W. and Lohse, H. (2002). Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Bound.-Layer Meteor., 105, 85–97.CrossRefGoogle Scholar
Bidlake, W. R. (2000). Evapotranspiration from a bulrush-dominated wetland in the Klamath Basin, Oregon. J. Amer. Water Resour. Assoc., 36, 1309–20.CrossRefGoogle Scholar
Bigg, G. R., Jickells, T. D., Liss, P. S. and Osborn, T. J. (2003). The role of the oceans in climate. Int. J. Climatol., 23, 1127–59.CrossRefGoogle Scholar
Biondi, F., Gershunov, A. and Cayan, D. R. (2001). North Pacific decadal climate variability since 1661. J. Climate, 14, 5–10.2.0.CO;2>CrossRefGoogle Scholar
Biswas, A. K. (1970). History of Hydrology. Amsterdam: North-Holland Publishing Co.Google Scholar
Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–72.2.3.CO;2>CrossRefGoogle Scholar
Black, E., Blackburn, M., Harrison, G., Hoskins, B. and Methven, J. (2004). Factors contributing to the summer 2003 European heatwave. Weather, 59, 217–23.CrossRefGoogle Scholar
Blaney, H. F. and Criddle, W. D. (1950). Determining Water Requirements in Irrigated Areas From Climatological and Irrigation Data. U.S. Department of Agriculture, Soil Conservation Service, SCS-TP 96.Google Scholar
Blunier, T. and Brook, E. J. (2001). Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–12.CrossRefGoogle ScholarPubMed
Bond, N. A. and Vecchi, G. A. (2003). The influence of the Madden-Julian oscillation on precipitation in Oregon and Washington. Wea. Forecast., 18, 600–13.2.0.CO;2>CrossRefGoogle Scholar
Bonsal, B. R. and Lawford, R. G. (1999). Teleconnections between El Niño and La Niña events and summer extended dry spells on the Canadian prairies. Int. J. Climatol., 19, 1445–58.3.0.CO;2-7>CrossRefGoogle Scholar
Bosart, L. F. and Sanders, F. (1981). The Johnstown flood of July 1977: a long-lived convective system. J. Atmos. Sci., 38, 1616–42.2.0.CO;2>CrossRefGoogle Scholar
Bosilovich, M. G. and Schubert, S. D. (2002). Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3, 149–65.2.0.CO;2>CrossRefGoogle Scholar
Boucher, R. J. and Wieler, J. G. (1985). Radar determination of snowfall rate and accumulation. J. Climate Appl. Meteor., 24, 68–73.2.0.CO;2>CrossRefGoogle Scholar
Bouwer, L. M., Vermaat, J. E. and Aerts, J. C. J. H. (2006). Winter atmospheric circulation and river discharge in northwest Europe. Geophys. Res. Lett., 33, L06403, doi:10.1029/2005GL025548.CrossRefGoogle Scholar
Bradley, E. F. (2003). Boundary layers: observational techniques in situ. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 280–90.CrossRefGoogle Scholar
Bradley, R. S. (1999). Paleoclimatology: Reconstructing Climates of the Quaternary, 2nd edn. San Diego, CA: Harcourt/Academic Press.Google Scholar
Bradley, R. S. and Jones, P. D. (1995). Climate since A.D. 1500: introduction. In Climate Since A.D. 1500, ed. Bradley, R. S. and Jones, P. D.. London: Routledge, pp. 1–16.Google Scholar
Bras, R. L. (1990). Hydrology: An Introduction to Hydrologic Science. Reading, MA: Addison-Wesley Publishing Company.Google Scholar
Braud, I., Haverkamp, R., Arrúe, J. L. and López, M. V. (2003). Spatial variability of soil surface properties and consequences for the annual and monthly water balance of a semiarid environment (EFEDA experiment). J. Hydrometeor., 4, 121–37.2.0.CO;2>CrossRefGoogle Scholar
Brooks, H. E. and Stensrud, D. J. (2000). Climatology of heavy rain events in the United States from hourly precipitation observations. Mon. Wea. Rev., 128, 1194–1201.2.0.CO;2>CrossRefGoogle Scholar
Brotzge, J. A. and Duchon, C. E. (2000). A field comparison among a domeless net radiometer, two four-component net radiometers, and a domed net radiometer. J. Atmos. Oceanic Technol., 17, 1569–82.2.0.CO;2>CrossRefGoogle Scholar
Bruce, J. P. and Clark, R. H. (1966). Introduction to Hydrometeorology. Oxford: Pergamon Press.Google Scholar
Bryson, R. A. (1997). The paradigm of climatology: an essay. Bull. Amer. Meteor. Soc., 78, 449–55.2.0.CO;2>CrossRefGoogle Scholar
Burke, E. J., Brown, S. J. and Christidis, N. (2006). Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeor., 7, 1113–25.CrossRefGoogle Scholar
Burns, S. P., Sun, J., Delany, A. C.et al. (2003). A field intercomparison technique to improve the relative accuracy of longwave radiation measurements and an evaluation of CASES-99 pyrgeometer data quality. J. Atmos. Oceanic Technol., 20, 348–61.2.0.CO;2>CrossRefGoogle Scholar
Burroughs, W. J. (2001). Climate Change: A Multidisciplinary Approach. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Byun, H. R. and Wilhite, D. A. (1999). Objective quantification of drought severity and duration. J. Climate, 12, 2747–56.2.0.CO;2>CrossRefGoogle Scholar
Caillault, K. and Lemaitre, Y. (1999). Retrieval of three-dimensional wind fields corrected for the time-induced advection problem. J. Atmos. Oceanic Technol., 16, 708–22.2.0.CO;2>CrossRefGoogle Scholar
Calder, I. R. (1993). Hydrologic effects of land-use change. In Handbook of Hydrology, ed. Maidment, D. R.. New York, NY: McGraw-Hill, Inc., pp. 13.1–13.50.Google Scholar
Calder, I. R., Hall, R. L., Harding, R. J. and Wright, I. R. (1984). The use of a wet-surface weighing lysimeter system in rainfall interception studies of heather (Calluna vulgaris). J. Climate Appl. Meteor., 23, 461–73.2.0.CO;2>CrossRefGoogle Scholar
Caracena, F., Maddox, R. A., Hoxit, L. R. and Chappell, C. F. (1979). Mesoanalysis of the Big Thompson storm. Mon. Wea. Rev., 107, 1–17.2.0.CO;2>CrossRefGoogle Scholar
Cashion, J., Lakshmi, V., Bosch, D. and Jackson, T. J. (2005). Microwave remote sensing of soil moisture: evaluation of the TRMM microwave imager (TMI) satellite for the Little River Watershed Tifton, Georgia. J. Hydrol., 307, 242–53.CrossRefGoogle Scholar
Castello, A. F. and Shelton, M. L. (2004). Winter precipitation on the US Pacific Coast and El Niño-Southern Oscillation events. Int. J. Climatol., 24, 481–97.CrossRefGoogle Scholar
Castellvi, F. (2004). Combining surface renewal analysis and similarity theory: a new approach for estimating sensible heat flux. Water Resour. Res., 40, W05201, doi:10.1029/2003WR002677.CrossRefGoogle Scholar
Catriona, M., Gardner, K., Bell, J. P.et al. (1991). Soil water content. In Soil Analysis: Physical Methods, ed. Smith, K. A. and Mullins, C. E.. New York, NY: Marcel Dekker, Inc., pp. 1–73.Google Scholar
Cayan, D. R. and Webb, R. H. (1992). El Niño/Southern Oscillation and streamflow in the western United States. In El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, ed. Diaz, H. F. and Markgraf, V.. Cambridge: Cambridge University Press, pp. 29–68.Google Scholar
Chahine, M. T. (1992). The hydrological cycle and its influence on climate. Nature, 359, 373–79.CrossRefGoogle Scholar
Champollion, C., Masson, F., Baelen, J.et al. (2004). GPS monitoring of the tropospheric water vapor distribution and variation during the 9 September 2002 torrential precipitation episode in the Cévennes (southern France). J. Geophys. Res., 109, D24102, doi:10.1029/2004JD004897.CrossRefGoogle Scholar
Chang, A. T. C., Foster, J. L. and Hall, D. K. (1987). Nimbus-7 derived global snow cover parameters. Ann. Glaciol., 9, 39–44.CrossRefGoogle Scholar
Chang, F-C. and Smith, E. A. (2001). Hydrological and dynamical characteristics of summertime droughts over U.S. great plains. J. Climate, 14, 2296–316.2.0.CO;2>CrossRefGoogle Scholar
Changnon, S. A. (1996). The Great Flood of 1993: Causes, Impacts, and Responses. Boulder, CO: Westview Press.Google Scholar
Changnon, S. A. and Kunkel, K. E. (2006). Changes in instruments and sites affecting historical weather records: a case study. J. Atmos. Oceanic Technol., 23, 825–8.CrossRefGoogle Scholar
Chao, Y., Ghil, M. and McWilliams, J. C. (2000). Pacific interdecadal variability in this century's sea surface temperatures. Geophys. Res. Lett., 27, 2261–4.CrossRefGoogle Scholar
Chen, F. W. and Staelin, D. H. (2003). AIRS/AMSU/HSB precipitation estimates. IEEE Trans. Geosci. Remote Sens., 41, 410–7.CrossRefGoogle Scholar
Chen, J. and Kumar, P. (2002). Role of terrestrial hydrologic memory in modulating ENSO impacts in North America. J. Climate, 15, 3569–85.2.0.CO;2>CrossRefGoogle Scholar
Chen, M., Xie, P. and Janowiak, J. E. (2002). Global land precipitation: a 50-year monthly analysis based on gauge observations. J. Hydrometeor., 3, 249–66.2.0.CO;2>CrossRefGoogle Scholar
Ciais, P., Reichstein, M., Viovy, N.et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529–33.CrossRefGoogle ScholarPubMed
Clark, M. P. and Vrugt, J. A. (2006). Unraveling uncertainties in hydrologic model calibration: addressing the problem of compensatory parameters. Geophys. Res. Lett., 33, L06406, doi:10.1029/2005GL025604.CrossRefGoogle Scholar
Clark, W. C. (1985). Scales of climate impacts. Climatic Change, 7, 5–27.CrossRefGoogle Scholar
Coe, M. T. (2000). Modeling terrestrial hydrological systems at the continental scale: testing the accuracy of an atmospheric GCM. J. Climate, 13, 686–704.2.0.CO;2>CrossRefGoogle Scholar
Coleman, J. S. M. and Rogers, J. C. (2003). Ohio River Valley winter moisture conditions associated with the Pacific-North American teleconnection pattern. J. Climate, 16, 969–81.2.0.CO;2>CrossRefGoogle Scholar
Contini, D., Mastrantonio, G., Viola, A. and Argentini, S. (2004). Mean vertical motions in the PBL measured by Doppler sodar: accuracy, ambiguities and possible improvements. J. Atmos. Oceanic Technol., 21, 1532–44.2.0.CO;2>CrossRefGoogle Scholar
Cook, E. R., Meko, D. M., Stahle, D. W. and Cleaveland, M. K. (1999). Drought reconstructions for the continental United States. J. Climate, 12, 1145–62.2.0.CO;2>CrossRefGoogle Scholar
Cosh, M. H., Stedinger, J. R. and Brutsaert, W. (2004). Variability of surface soil moisture at the watershed scale. Water Resour. Res., 40, W12513, doi:10.1029/2004WR003487.CrossRefGoogle Scholar
Costa, J. E. (1987). Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. J. Hydrol., 93, 313–38.CrossRefGoogle Scholar
Coulibaly, P. and Burn, D. H. (2005). Spatial and temporal variability of Canadian seasonal streamflows. J. Climate, 18, 191–210.CrossRefGoogle Scholar
Crescenti, G. H. (1997). A look back on two decades of Doppler sodar comparison studies. Bull. Amer. Meteor. Soc., 78, 651–73.2.0.CO;2>CrossRefGoogle Scholar
Crimmins, M. A. (2006). Synoptic climatology of extreme fire-weather conditions across the southwest United States. Int. J. Climatol., 26, 1001–16.CrossRefGoogle Scholar
Crow, W. T., Wood, E. F. and Pan, M. (2003). Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals. J. Geophys. Res., 108, 4725, doi:10.1029/2002JD003292.CrossRefGoogle Scholar
Crum, T. D. and Alberty, R. L. (1993). The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 1669–87.2.0.CO;2>CrossRefGoogle Scholar
Crum, T. D., Alberty, R. L. and Burgess, D. W. (1993). Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645–53.2.0.CO;2>CrossRefGoogle Scholar
Crum, T. D., Saffle, R. E. and Wilson, J. W. (1998). An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecast., 13, 253–62.2.0.CO;2>CrossRefGoogle Scholar
Cunderlik, J. M., Ouarda, T. B. M. J. and Bobée, B. (2004). On the objective identification of flood seasons. Water Resour. Res., 40, W01520, doi:10.1029/2003WR002295.CrossRefGoogle Scholar
Cushman, J. H. (1986). On measurement, scale, and scaling. Water Resour. Res., 22, 129–34.CrossRefGoogle Scholar
Czikowsky, M. J. and Fitzjarrald, D. R. (2004). Evidence of seasonal changes in evapotranspiration in eastern U.S. hydrological records. J. Hydrometeor., 5, 974–88.2.0.CO;2>CrossRefGoogle Scholar
Dabberdt, W. F., Shellhorn, R., Cole, H.et al. (2003). Radiosondes. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 1900–13.CrossRefGoogle Scholar
Dai, A. and Trenberth, K. E. (2002). Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeor., 3, 660–87.2.0.CO;2>CrossRefGoogle Scholar
Dai, A., Fung, I. Y. and Del Genio, A. D. (1997). Surface observed global land precipitation variations during 1900–88. J. Climate, 10, 2943–62.2.0.CO;2>CrossRefGoogle Scholar
Dai, A., Lamb, P. J., Trenberth, K. E.et al. (2004a). The recent Sahel drought is real. Int. J. Climatol., 24, 1323–31.CrossRefGoogle Scholar
Dai, A., Trenberth, K. E. and Qian, T. (2004b). A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 1117–30.CrossRefGoogle Scholar
Dai, A., Wang, J., Ware, R. H. and Hove, T. (2002). Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res., 107, 4090, doi:10.1029/2001JD000642.CrossRefGoogle Scholar
Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L. and Pasteris, P. (2002). A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99–113.CrossRefGoogle Scholar
Davi, N. K., Jacoby, G. C., Curtis, A. E., Baatarbileg, N. (2006). Extension of drought records for central Asia using tree rings: west-central Mongolia. J. Climate, 19, 288–99.CrossRefGoogle Scholar
Bruin, H. (2002). Introduction: renaissance of scintillometry. Bound.-Layer Meteor., 105, 1–4.CrossRefGoogle Scholar
DeFelice, T. P. (1998). An Introduction to Meteorological Instrumentation and Measurement. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Delrieu, G., Ducrocq, V., Gaume, E.et al. (2005). The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: a first case study for the Cévennes-Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeor., 6, 34–52.CrossRefGoogle Scholar
Deser, C. and Wallace, J. W. (1990). Large scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3, 1254–81.2.0.CO;2>CrossRefGoogle Scholar
Dettinger, M. D. and Diaz, H. F. (2000). Global characteristics of stream flow seasonality and variability. J. Hydrometeor., 1, 289–310.2.0.CO;2>CrossRefGoogle Scholar
Dingman, S. L. (1994). Physical Hydrology. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Dirmeyer, P. A. and Brubaker, K. L. (2006). Evidence for trends in the Northern Hemisphere water cycle. Geophys. Res. Lett., 33, L14712, doi:10.1029/2006GL026359.CrossRefGoogle Scholar
Dirmeyer, P. A., Guo, Z. and Gao, X. (2004). Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeor., 5, 1011–33.CrossRefGoogle Scholar
Dooge, J. C. I. (1995). Scale problems in surface fluxes. In Space and Time Scale Variability and Interdependencies in Hydrological Processes, ed. Feddes, R. A.. Cambridge: Cambridge University Press, pp. 21–32.CrossRefGoogle Scholar
Doorenbos, J. and Pruitt, W. O. (1977). Guidelines for Predicting Crop Water Requirements. FAO Irrigation and Drainage Paper 24. Rome: United Nations Food and Agriculture Organization.Google Scholar
DoswellIII, C. A., Brooks, H. E. and Maddox, R. A. (1996). Flash flood forecasting: an ingredients-based methodology. Wea. Forecast., 11, 560–81.2.0.CO;2>CrossRefGoogle Scholar
Douglas, E. M. and Barros, A. P. (2003). Probable maximum precipitation estimation using multifractals: application in the eastern United States. J. Hydrometeor., 4, 1012–24.2.0.CO;2>CrossRefGoogle Scholar
Doviak, R. J. and Doviak, M. E. F. (2003). Radar: Doppler radar. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 1802–12.CrossRefGoogle Scholar
Dracup, J. A. and Kendall, D. R. (1990). Floods and droughts. In Climate Change and U.S. Water Resources, ed. Waggoner, P. E.. New York, NY: John Wiley and Sons, pp. 243–67.Google Scholar
Duchon, C. E. and Essenberg, G. R. (2001). Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. Water Resour. Res., 37, 3253–63.CrossRefGoogle Scholar
Durre, I. and Wallace, J. M. (2001). Factors influencing the cold-season diurnal temperature range in the United States. J. Climate, 14, 3263–78.2.0.CO;2>CrossRefGoogle Scholar
Durre, I., Wallace, J. M. and Lettenmaier, D. P. (2000). Dependence of extreme daily maximum temperature on antecedent soil moisture in the contiguous United States during summer. J. Climate, 13, 2641–51.2.0.CO;2>CrossRefGoogle Scholar
Eagleson, P. S. (1978). Climate, soil, and vegetation. 6. Dynamics of the annual water balance. Water Resour. Res., 14, 749–64.CrossRefGoogle Scholar
Eagleson, P. S. (1994). The evolution of modern hydrology (from watershed to continent in 30 years). Adv. Water Resour., 17, 3–18.CrossRefGoogle Scholar
Easterling, D. R., Evans, J. L., Groisman, P. Y.et al. (2000). Observed variability and trends in extreme climate events: a brief review. Bull. Amer. Meteor. Soc., 81, 417–25.2.3.CO;2>CrossRefGoogle Scholar
Easterling, D. R., Horton, B., Jones, P. D.et al. (1997). Maximum and minimum temperature trends for the globe. Science, 277, 364–7.CrossRefGoogle Scholar
Ebbesmeyer, C. C., Cayan, D. R., McLain, D. R.et al. (1991). 1976 step in the Pacific climate: forty environmental changes between 1968–1975 and 1977–1984. In Proceedings of the Seventh Annual Pacific Climate (PACLIM) Workshop, ed. Betancourt, J. L. and Tharp, V. L.. Sacramento: California Department of Water Resources, Interagency Ecological Studies Program Technical Report 26, pp. 115–26.Google Scholar
Elliot, W. J. (1995). Precipitation. In Environmental Hydrology, ed. Ward, A. D. and Elliot, W. J.. New York, NY: Lewis Publishers, pp. 19–46.Google Scholar
Elliott, W. P., Ross, R. J. and Blackmore, W. H. (2002). Recent changes in NWS upper-air observations with emphasis on changes from VIZ to Vaisala radiosondes. Bull. Amer. Meteor. Soc., 83, 1003–17.2.3.CO;2>CrossRefGoogle Scholar
Eltahir, E. A. B. and Gong, C. (1996). Dynamics of wet and dry years in West Africa. J. Climate, 9, 1030–42.2.0.CO;2>CrossRefGoogle Scholar
Engman, E. T. (1993). Remote sensing. In Handbook of Hydrology, ed. Maidment, D. R.. New York, NY: McGraw-Hill, Inc., pp. 24.1–24.23.Google Scholar
Entekhabi, D., Asrar, G. R., Betts, A. K.et al. (1999). An agenda for land surface hydrology research and a call for the second international hydrological decade. Bull. Amer. Meteor. Soc., 80, 2043–58.2.0.CO;2>CrossRefGoogle Scholar
Eskridge, R. E., Alduchov, O. A., Chernykh, I. V.et al. (1995). A comprehensive aerological reference data set (CARDS): rough and systematic errors. Bull. Amer. Meteor. Soc., 76, 1759–75.2.0.CO;2>CrossRefGoogle Scholar
Eskridge, R. E., Luers, J. K. and Redder, C. R. (2003). Unexplained discontinuity in the U.S. radiosonde temperature data. Part I: Troposphere. J. Climate, 16, 2385–95.CrossRefGoogle Scholar
Esper, J., Cook, E. R. and Schweingruber, F. H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295, 2250–3.CrossRefGoogle ScholarPubMed
Fattorelli, S., Dalla Fontana, G. and Da Ros, D. (1999). Flood hazard assessment and mitigation. In Floods and Landslides: Integrated Risk Assessment, ed. Casale, R. and Margottini, C.. Berlin: Springer, pp. 19–38.CrossRefGoogle Scholar
Feddes, R. A. (1995). Remote sensing–inverse modeling approach to determine large scale effective soil hydraulic properties in soil-vegetation-atmosphere systems. In Space and Time Scale Variability and Interdependencies in Hydrological Processes, ed. Feddes, R. A.. Cambridge: Cambridge University Press, pp. 33–42.CrossRefGoogle Scholar
Fekete, B. M., Vörösmarty, C. J., Roads, J. O. and Willmott, C. J. (2004). Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294–304.2.0.CO;2>CrossRefGoogle Scholar
Feng, X. and Epstein, S. (1994). Climatic implications of the 8000-year hydrogen isotope time series from bristlecone pine trees. Science, 265, 1079–81.CrossRefGoogle ScholarPubMed
Ferraris, L., Rudari, R. and Siccardi, F. (2002). The uncertainty in the prediction of flash floods in the northern Mediterranean environment. J. Hydrometeor., 3, 714–27.2.0.CO;2>CrossRefGoogle Scholar
Ferraro, R. R. (1997). Special sensor microwave imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16715–35.CrossRefGoogle Scholar
Ferraro, R. R., Weng, F., Grody, N. C. and Basist, A. (1996). An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc., 77, 891–905.2.0.CO;2>CrossRefGoogle Scholar
Ferraro, R. R., Weng, F., Grody, N. C.et al. (2005). NOAA operational hydrological products derived from the advanced microwave sounding unit. IEEE Trans. Geosci. Remote Sens., 43, 1036–49.CrossRefGoogle Scholar
Fink, A. H., Brücher, T., Krüger, A.et al. (2004). The 2003 European summer heatwaves and drought – synoptic diagnosis and impacts. Weather, 59, 209–16.CrossRefGoogle Scholar
Foster, J. L., Sun, C., Walker, J. P.et al. (2005). Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens. Environ., 94, 187–203.CrossRefGoogle Scholar
Fowler, H. J. and Kilsby, C. G. (2003). A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. Int. J. Climatol., 23, 1313–34.CrossRefGoogle Scholar
Francois, C., Quesney, A. and Ottlé, C. (2003). Sequential assimilation of ERS-1 SAR data into a coupled land surface-hydrological model using an extended Kalman filter. J. Hydrometeor., 4, 473–87.2.0.CO;2>CrossRefGoogle Scholar
Free, M., Durre, I., Aguilar, E.et al. (2002). Creating climate reference datasets: CARDS workshop on adjusting radiosonde temperature data for climate monitoring. Bull. Amer. Meteor. Soc., 83, 891–9.2.3.CO;2>CrossRefGoogle Scholar
Fritsch, J. M. and Carbone, R. E. (2004). Improving quantitative precipitation forecasts in the warm season: a USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955–65.CrossRefGoogle Scholar
Fritts, H. C. (1976). Tree Rings and Climate. London: Academic Press.Google Scholar
Fritts, H. C. (1991). Reconstructing Large-Scale Climatic Patterns from Tree-Ring Data: A Diagnostic Analysis. Tucson, AZ: The University of Arizona Press.Google Scholar
Fritts, H. C. and Shao, X. M. (1995). Mapping climate using tree-rings from western North America. In Climate Since A.D. 1500, ed. Bradley, R. S. and Jones, P. D.. London: Routledge, pp. 269–95.Google Scholar
Fye, F. K. and Cleaveland, M. K. (2001). Paleoclimatic analyses of tree-ring reconstructed summer drought in the United States, 1700–1978. Tree-Ring Res., 57, 31–44.Google Scholar
Gay, L. W. (1979). Radiation budgets of desert, meadow, forest, and marsh sites. Archiv. Meteor. Geophys. Bioklim. B, 27, 349–59.CrossRefGoogle Scholar
Gedalof, Z., Peterson, D. L. and Mantua, N. J. (2004). Columbia River flow and drought since 1750. J. Amer. Water Resour. Assoc., 40, 1579–92.CrossRefGoogle Scholar
Georgakakos, K. P., Tsintikidis, D., Attia, B. and Roskar, J. (2001). Estimation of pixel-scale daily rainfall over Nile River catchments using multi-spectral METEOSAT data. In Remote Sensing and Hydrology 2000, IAHS Publication No. 267, ed. Owe, M., Brubaker, K., Ritchie, J. and Rango, A.. Wallingford, UK: IAHS Press, pp. 11–5.Google Scholar
Gershunov, A. and Barnett, T. P. (1998). Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 2715–25.2.0.CO;2>CrossRefGoogle Scholar
Giannoni, F., Smith, J. A., Zhang, Y. and Roth, G. (2003). Hydrologic modeling of extreme floods using radar rainfall estimates. Adv. Water Resour., 26, 195–203.CrossRefGoogle Scholar
Gillespie, A., Rokugawa, S., Matsunaga, T.et al. (1998). A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens., 36, 1113–26.CrossRefGoogle Scholar
Goody, R. M. and Yung, Y. L. (1989). Atmospheric Radiation: Theoretical Basis, 2nd edn. New York, NY: Oxford University Press.Google Scholar
Graham, N. E. and Diaz, H. F. (2001). Evidence for intensification of North Pacific winter cyclones since 1948. Bull. Amer. Meteor. Soc., 82, 1869–93.2.3.CO;2>CrossRefGoogle Scholar
Granger, R. J. (2000). Satellite-derived estimates of evapotranspiration in the Gediz basin. J. Hydrol., 229, 70–6.CrossRefGoogle Scholar
Grayson, R. B., Blöschl, G., Western, A. W. and McMahon, T. A. (2002). Advances in the use of observed spatial patterns of catchment hydrological response. Adv. Water Resour., 25, 1313–34.CrossRefGoogle Scholar
Green, A. E., Green, S. R., Astill, M. S. and Caspari, H. W. (2000). Estimating latent heat flux from a vineyard using scintillometry. TAO, 11, 525–42.Google Scholar
Green, W. H. and Ampt, G. A. (1911). Studies in soil physics, part 1. The flow of air and water through soils. J. Agric. Sci., 4, 1–24.Google Scholar
Greene, J. S. and Morrissey, M. L. (2000). Validation and uncertainty analysis of satellite rainfall algorithms. Prof. Geogr., 52, 247–58.CrossRefGoogle Scholar
Grist, J. P. and Nicholson, S. E. (2001). A study of the dynamic factors influencing the rainfall variability in the West Africa Sahel. J. Climate, 14, 1337–59.2.0.CO;2>CrossRefGoogle Scholar
Groisman, P. Y. and Easterling, D. A. (1995). Variability and trends of precipitation and snowfall over North America. In Natural Climate Variability on Decade-to-Century Time Scales, ed. Martinson, D. G., Bryan, K., Ghil, M.et al. Washington, D.C.: National Academy Press, pp. 67–79.Google Scholar
Groisman, P. Y. and Legates, D. R. (1994). The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75, 215–27.2.0.CO;2>CrossRefGoogle Scholar
Grotjahn, R. (2003). General circulation: mean characteristics. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 841–54.CrossRefGoogle Scholar
Gruntfest, E. (2000). Nonstructural mitigation of flood hazards. In Inland Flood Hazards: Human, Riparian, and Aquatic Communities, ed. Wohl, E. E.. New York, NY: Cambridge University Press, pp. 394–410.CrossRefGoogle Scholar
Gualdi, S., Navarra, A. and Tinarelli, G. (1999). The interannual variability of the Madden-Julian oscillation in an ensemble of GCM simulations. Climate Dyn., 15, 643–58.CrossRefGoogle Scholar
Gupta, S. K., Kratz, D. P., Wilber, A. C. and Nguyen, L. C. (2004). Validation of parameterized algorithms used to derive TRMM-CERES surface radiative fluxes. J. Atmos. Oceanic Technol., 21, 742–52.2.0.CO;2>CrossRefGoogle Scholar
Gutman, G., Csiszar, I. and Romanov, P. (2000). Using NOAA/AVHRR products to monitor El Niño impacts: focus on Indonesia in 1997–98. Bull. Amer. Meteor. Soc., 81, 1189–1205.2.3.CO;2>CrossRefGoogle Scholar
Guttman, N. B. (1998). Comparing the Palmer drought index and the standardized precipitation index. J. Amer. Water Resour. Assoc., 34, 113–21.CrossRefGoogle Scholar
Guttman, N. B., Hosking, J. R. M. and Wallis, J. R. (1994). The 1993 Midwest extreme precipitation in historical and probabilistic perspective. Bull. Amer. Meteor. Soc., 75, 1785–92.2.0.CO;2>CrossRefGoogle Scholar
Guyot, G. (1998). Physics of the Environment and Climate. Chichester: John Wiley and Sons–Praxis Publishing.Google Scholar
Haigh, J. D. (1996). The impact of solar variability on climate. Science, 272, 981–4.CrossRefGoogle ScholarPubMed
Hall, D. K., Riggs, G. A., Salomonson, V. V. and Scharfen, G. R. (2001). Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) global snow-cover maps. In Remote Sensing and Hydrology 2000 IAHS Publication No. 267, ed. Owe, M., Brubaker, K., Ritchie, J. and Rango, A.. Wallingford, UK: IAHS Press, pp. 55–60.Google Scholar
Hannaford, J. and Marsh, T. (2006). An assessment of trends in UK runoff and low flows using a network of undisturbed catchments. Int. J. Climatol., 26, 1237–53.CrossRefGoogle Scholar
Hanson, R. L. (1991). Evapotranspiration and droughts. In National Water Summary 1988–89 – Hydrologic Events and Floods and Droughts. U.S. Geological Survey Water-Supply Paper 2375. Washington, D.C.: U.S. Government Printing Office, pp. 99–104.Google Scholar
Hare, F. K. (1987). Drought and desiccation: twin hazards of a variable climate. In Planning for Drought: Toward a Reduction of Societal Vulnerability, ed. Wilhite, D. A., Easterling, W. E. and Wood, D. A.. Boulder, CO: Westview Press, pp. 3–9.Google Scholar
Hare, S. R. and Mantua, N. J. (2000). Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr., 47, 103–45.CrossRefGoogle Scholar
Harries, J. E. (2003). Satellite remote sensing: water vapor. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 2005–12.CrossRefGoogle Scholar
Hartmann, D. L. (1994). Global Physical Climatology. San Diego, CA: Academic Press.Google Scholar
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. and Röhl, U. (2001). Southward migration of the intertropical convergence zone through the holocene. Science, 293, 1304–8.CrossRefGoogle ScholarPubMed
Hayden, B. P. (1988). Flood climates. In Flood Geomorphology, ed. Baker, V. R., Kochel, R. C., and Patton, P. C.. New York, NY: John Wiley and Sons, pp. 13–26.Google Scholar
Hayes, M. J., Svoboda, M. D., Wilhite, D. A. and Vanyarkho, O. V. (1999). Monitoring the 1996 drought using the standardized precipitation index. Bull. Amer. Meteor. Soc., 80, 429–38.2.0.CO;2>CrossRefGoogle Scholar
Hayes, P. S., Rasmussen, L. A. and Conway, H. (2002). Estimating precipitation in the central Cascades of Washington. J. Hydrometeor., 3, 335–46.2.0.CO;2>CrossRefGoogle Scholar
Heidinger, A. K. and Stephens, G. L. (2000). Molecular line absorption in a scattering atmosphere. Part II: application to remote sensing in the O2 A band. J. Atmos. Sci., 57, 1615–34.2.0.CO;2>CrossRefGoogle Scholar
Heim, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 1149–65.CrossRefGoogle Scholar
Herschy, R. W. (1997). Streamflow measurement for the 21st century. In Land Surface Processes in Hydrology: Trials and Tribulations of Modeling and Measuring, ed. Sorooshian, S., Gupta, H. V. and Rodda, J. C.. NATO ASI Series, I 46. Berlin: Springer-Verlag, pp. 389–421.CrossRefGoogle Scholar
Hidalgo, H. G. (2004). Climate precursors of multidecadal drought variability in the western United States. Water Resour. Res., 40, W12504, doi:10.1029/2004WR003350.CrossRefGoogle Scholar
Hidalgo, H. G. and Dracup, J. A. (2003). ENSO and PDO effects on hydroclimatic variations of the Upper Colorado River basin. J. Hydrometeor., 4, 5–23.2.0.CO;2>CrossRefGoogle Scholar
Higgins, R. W., Leetmaa, A. and Kousky, V. E. (2002). Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 15, 1555–72.2.0.CO;2>CrossRefGoogle Scholar
Hillel, D. (2004). Introduction to Environmental Soil Physics. San Diego, CA: Elsevier Academic Press.Google Scholar
Hirschboeck, K. K. (1988). Flood hydroclimatology. In Flood Geomorphology, ed. Baker, V. R., Kochel, R. C. and Patton, P. C.. New York, NY: John Wiley and Sons, pp. 27–49.Google Scholar
Hirschboeck, K. K. (1991). Climate and floods. In National Water Summary 1988–89 – Hydrologic Events and Floods and Droughts. U.S. Geological Survey Water-Supply Paper 2375. Washington, D.C.: U.S. Government Printing Office, pp. 67–88.Google Scholar
Hirschboeck, K. K., Ely, L. L. and Maddox, R. A. (2000). Hydroclimatology of meteorologic floods. In Inland Flood Hazards: Human, Riparian, and Aquatic Communities, ed. Wohl, E. E.. New York, NY: Cambridge University Press, pp. 39–72.CrossRefGoogle Scholar
Hisdal, H., Stahl, D., Tallaksen, L. M. and Demuth, S. (2001). Have streamflow droughts in Europe become more severe or frequent?Int. J. Climatol., 21, 317–33.CrossRefGoogle Scholar
Hodgkins, G. A. and Dudley, R. W. (2006). Changes in the timing of winter-spring streamflows in eastern North America, 1913–2002. Geophys. Res. Lett., 33, L06402, doi:10.1029/2005GL025593.CrossRefGoogle Scholar
Hoerling, M. and Kumar, A. (2003). The perfect ocean for drought. Science, 299, 691–4.CrossRefGoogle ScholarPubMed
Hoerling, M. P., Hurrell, J. W. and Xu, T. (2001). Tropical origins for recent North Atlantic climate change. Science, 292, 90–2.CrossRefGoogle ScholarPubMed
Holmes, R. R. (1996). Sediment Transport in the Lower and Central Mississippi Rivers, June 26 Through September 14, 1993. U.S. Geological Survey Circular 1120-I. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Horton, R. E. (1940). An approach toward a physical interpretation of infiltration-capacity. J. Soil Sci. Amer., 5, 399–417.CrossRefGoogle Scholar
Hoyt, D. V. and Schatten, K. H. (1997). The Role of the Sun in Climate Change. New York, NY: Oxford University Press.Google Scholar
Hu, Q. and Willson, G. D. (2000). Effects of temperature anomalies on the Palmer drought severity index in the central United States. Int. J. Climatol., 20, 1899–1911.3.0.CO;2-M>CrossRefGoogle Scholar
Hu, Q., Woodruff, C. M. and Mudrick, S. E. (1998). Interdecadal variations of annual precipitation in the central United States. Bull. Amer. Meteor. Soc., 79, 221–9.2.0.CO;2>CrossRefGoogle Scholar
Hudson, S. R., Town, M. S., Walden, V. P. and Warren, S. G. (2004). Temperature, humidity, and pressure response of radiosondes at low temperatures. J. Atmos. Oceanic Technol., 21, 825–36.2.0.CO;2>CrossRefGoogle Scholar
Huffman, G. J., Adler, R. F., Arkin, P.et al. (1997). The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5–20.2.0.CO;2>CrossRefGoogle Scholar
Huffman, G. J., Adler, R. F., Morrissey, M. M.et al. (2001). Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36–50.2.0.CO;2>CrossRefGoogle Scholar
Huffman, G. J., Adler, R. F., Rudolf, B., Schneider, U. and Keehn, P. R. (1995). Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8, 1284–95.2.0.CO;2>CrossRefGoogle Scholar
Hughes, M. (1995). Dendroclimatic evidence from the western Himalaya. In Climate Since A.D. 1500, ed. Bradley, R. S. and Jones, P. D.. London: Routledge, pp. 415–31.Google Scholar
Hughes, M. (1996). Tree-ring analysis. In Encyclopedia of Climate and Weather, ed. Schneider, S. H.. New York, NY: Oxford University Press, pp. 773–5.Google Scholar
Hughes, M. and Graumlich, L. J. (1996). Multimillennial dendroclimatic studies from the western United States. In Climatic Variations and Forcing Mechanisms of the Last 2000 Years, ed. Jones, P. D., Bradley, R. S. and Jouzel, J.. Berlin: Springer-Verlag, pp. 109–24.CrossRefGoogle Scholar
Hughes, M., Kelly, P. M., Pilcher, J. and LaMarche, V. C., ed. (1981). Climate from Tree Rings. Cambridge: Cambridge University Press.Google Scholar
Humes, K. S., Kustas, W. P. and Moran, M. S. (1994). Use of remote sensing and reference site measurements to estimate instantaneous surface energy balance components over a semiarid rangeland watershed. Water Resour. Res., 30, 1363–73.CrossRefGoogle Scholar
Hunrichs, R. A. (1991). California floods and drought. In National Water Summary 1988–89 – Hydrologic Events and Floods and Droughts. U.S. Geological Survey Water-Supply Paper 2375. Washington, D.C.: U.S. Government Printing Office, pp. 197–206.Google Scholar
Hunt, B. G. (2001). A description of persistent climatic anomalies in a 1000-year climatic model simulation. Climate Dyn., 17, 717–33.CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science, 269, 676–9.CrossRefGoogle ScholarPubMed
Hurrell, J. W. and Loon, H. (1997). Decadal variations in climate associated with the North Atlantic oscillation. Climatic Change, 36, 301–26.CrossRefGoogle Scholar
Hurrell, J. W., Brown, S. J., Trenberth, K. E. and Christy, J. R. (2000). Comparison of tropospheric temperatures from radiosondes and satellites: 1979–98. Bull. Amer. Meteor. Soc., 81, 2165–77.2.3.CO;2>CrossRefGoogle Scholar
Hurrell, J. W., Kushnir, Y. and Visbeck, M. (2001). The North Atlantic oscillation. Science, 291, 603–5.CrossRefGoogle ScholarPubMed
,Intergovernmental Panel on Climate Change (IPCC) (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J., et al. Cambridge: Cambridge University Press.Google Scholar
,International Commission on Large Dams (ICOLD). (2003). World Registry of Dams. Paris: ICOLD.
Jackson, T. J., Hsu, A. Y. and O'Neill, P. E. (2002). Surface soil moisture retrieval and mapping using high-frequency microwave satellite observations in the southern Great Plains. J. Hydrometeor., 3, 688–99.2.0.CO;2>CrossRefGoogle Scholar
Jacobowitz, H., Stowe, L. L., Ohring, G.et al. (2003). The advanced very high resolution radiometer Pathfinder atmosphere (PATMOS) climate dataset: a resource for climate research. Bull. Amer. Meteor. Soc., 84, 785–93.CrossRefGoogle Scholar
Jacobs, J. M., Myers, D. A. and Whitfield, B. M. (2003). Improved rainfall/runoff estimates using remotely sensed soil moisture. J. Amer. Water Resour. Assoc., 39, 313–24.CrossRefGoogle Scholar
Jain, S. and Lall, U. (2001). Floods in a changing climate: does the past represent the future?Water Resour. Res., 37, 3193–3205.CrossRefGoogle Scholar
Jens, S. W. and McPherson, M. B. (1964). Hydrology and urban areas. In Handbook of Applied Hydrology: A Compendium of Water-Resources Technology, ed. Chow, V. T.. New York, NY: McGraw-Hill, Section 20, pp. 1–45.Google Scholar
Jensen, M. E., Burman, R. D. and Allen, R. G. ed. (1990). Evaporation and Irrigation Water Requirements. New York, NY: American Society of Civil Engineers.Google Scholar
Jha, M., Pan, Z., Takle, E. S. and Gu, R. (2004). Impacts of climate change on streamflow in the Upper Mississippi River Basin: a regional climate model perspective. J. Geophys. Res., 109, D09105, doi:10.1029/2003JD003686.CrossRefGoogle Scholar
Jin, M. (2004). Analysis of land skin temperature using AVHRR observations. Bull. Amer. Meteor. Soc., 85, 587–600.CrossRefGoogle Scholar
Johnson, R. S., Williams, L. E., Ayars, J. E. and Trout, T. J. (2005). Weighing lysimeters aid study of water relations in tree and vine crops. Calif. Agric., 59, 133–6.CrossRefGoogle Scholar
Jones, C. (2000). Occurrence of extreme precipitation events in California and relationships with the Madden-Julian oscillation. J. Climate, 13, 3576–87.2.0.CO;2>CrossRefGoogle Scholar
Jones, J. A. A. (1997). Global Hydrology: Processes, Resources and Environmental Management. Harlow: Longman.Google Scholar
Jones, P. D. and Bradley, R. S. (1995). Climatic variations in the longest instrumental records. In Climate Since A.D. 1500, ed. Bradley, R. S. and Jones, P. D.. London: Routledge, pp. 246–68.Google Scholar
Jones, R. N. and Pittock, A. B. (2002). Climate change and water resources in an arid continent: managing uncertainty and risk in Australia. In Climatic Change: Implications for the Hydrological Cycle and for Water Management, ed. Beniston, M.. Dordrecht: Kluwer Academic Publishers, pp. 465–501.CrossRefGoogle Scholar
Justice, C. O., Townshend, J. R. G., Vermote, E. F.et al. (2002). An overview of MODIS land data processing and product status. Remote Sens. Environ., 83, 3–15.CrossRefGoogle Scholar
Kalnay, E., Kanamitsu, M., Kistler, R.et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–71.2.0.CO;2>CrossRefGoogle Scholar
Kanamitsu, M., Ebisuzaki, W., Woollen, J.et al. (2002). NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–43.CrossRefGoogle Scholar
Kane, R. P. (1997). Relationship of El Niño-Southern oscillation and Pacific sea surface temperature with rainfall in various regions of the globe. Mon. Wea. Rev., 125, 1792–1800.2.0.CO;2>CrossRefGoogle Scholar
Karl, T. R. (1983). Some spatial characteristics of drought duration in the United States. J. Climate Appl. Meteor., 22, 1356–66.2.0.CO;2>CrossRefGoogle Scholar
Karl, T. R. (1986a). The sensitivity of the Palmer drought severity index and Palmer's z-index to their calibration coefficients including potential evapotranspiration. J. Climate Appl. Meteor., 25, 77–86.2.0.CO;2>CrossRefGoogle Scholar
Karl, T. R. (1986b). The relationship of soil moisture parameterizations to subsequent seasonal and monthly mean temperatures in the United States. Mon. Wea. Rev., 114, 675–86.2.0.CO;2>CrossRefGoogle Scholar
Karl, T. R., Jones, P. D., Knight, R. W.et al. (1993). A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74, 1007–23.2.0.CO;2>CrossRefGoogle Scholar
Karl, T. R., Quinlan, F. and Ezell, D. S. (1987). Drought termination and amelioration: its climatological probability. J. Climate Appl. Meteor., 26, 1198–1209.2.0.CO;2>CrossRefGoogle Scholar
Katz, R. W., Parlange, M. B. and Naveau, P. (2002). Statistics of extremes in hydrology. Adv. Water Resour., 25, 1287–1304.CrossRefGoogle Scholar
Kelly, R. E., Chang, A. T., Tsang, L. and Foster, J. L. (2003). A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens., 41, 230–42.CrossRefGoogle Scholar
Kemball-Cook, S. R. and Weare, B. C. (2001). The onset of convection in the Madden-Julian oscillation. J. Climate, 14, 780–93.2.0.CO;2>CrossRefGoogle Scholar
Kidd, C., Kniveton, D. R., Todd, M. C. and Bellerby, T. J. (2003). Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 1088–1104.2.0.CO;2>CrossRefGoogle Scholar
Kidder, S. Q. (2003). Satellites: orbits. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 2024–38.CrossRefGoogle Scholar
Kiehl, J. T. and Trenberth, K. E. (1997). Earth's annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197–208.2.0.CO;2>CrossRefGoogle Scholar
Kiem, A. S. and Franks, S. W. (2001). On the identification of ENSO-induced rainfall and runoff variability: a comparison of methods and indices. Hydrol. Sci. J., 46, 715–27.CrossRefGoogle Scholar
Kilmartin, R. F. (1980). Hydroclimatology – a needed cross-discipline. In Improved Hydrologic Forecasting – Why and How, ed. Henry, W. P.. New York, NY: American Society of Civil Engineers, pp. 160–98.Google Scholar
Kite, G. W. and Droogers, P. (2000). Comparing evapotranspiration estimates from satellites, hydrological models and field data. J. Hydrol., 229, 3–18.CrossRefGoogle Scholar
Klazura, G. E. and Imy, D. A. (1993). A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 1293–1311.2.0.CO;2>CrossRefGoogle Scholar
Klemeš, V. (1987). Drought prediction: a hydrological perspective. In Planning for Drought: Toward a Reduction of Societal Vulnerability, ed. Wilhite, D. A., Easterling, W. E. and Wood, D. A.. Boulder, CO: Westview Press, pp. 81–94.Google Scholar
Knapp, P. A., Soulé, P. T. and Grissino-Mayer, H. D. (2004). Occurrence of sustained droughts in the interior Pacific Northwest (A.D. 1733–1980) inferred from tree-ring data. J. Climate, 17, 140–50.2.0.CO;2>CrossRefGoogle Scholar
Knippertz, P., Ulbrich, U., Marques, F. and Corte-Real, J. (2003). Decadal changes in the link between El Niño and springtime North Atlantic oscillation and European-North African rainfall. Int. J. Climatol., 23, 1293–311.CrossRefGoogle Scholar
Knox, J. C. (1988). Climatic influence on upper Mississippi valley floods. In Flood Geomorphology, ed. Baker, V. R., Kochel, R. C. and Patton, P. C.. New York, NY: John Wiley and Sons, pp. 279–300.Google Scholar
Koellner, W. H. (1996). The flood's hydrology. In The Great Flood of 1993: Causes, Impacts, and Responses, ed. Changnon, S. A.. Boulder, CO: Westview Press, pp. 68–100.Google Scholar
Kohsiek, W., Meijninger, W. M. L., Moene, A. F.et al. (2002). An extra large aperture scintillometer for long range applications. Bound.-Layer Meteor., 105, 119–27.CrossRefGoogle Scholar
Kongoli, C., Pellegrino, P., Ferraro, R. R., Grody, N. C. and Meng, H. (2003). A new snowfall detection algorithm over land using measurements from the Advanced Microwave Sounding Unit (AMSU). Geophys. Res. Lett., 30, 1756, doi:10.1029/2003GL017177.CrossRefGoogle Scholar
Konrad, C. E. (1998). Intramonthly indices of the Pacific/North American teleconnection pattern and temperature regimes over the United States. Theor. Appl. Climatol., 60, 11–19.CrossRefGoogle Scholar
Koutsoyiannis, D., Efstratiadis, A. and Georgakakos, K. P. (2007). Uncertainty assessment of future hydroclimatic predictions: a comparison of probabilistic and scenario-based approaches. J. Hydrometeor., 8, 261–81.CrossRefGoogle Scholar
Krajewski, W. F. and Smith, J. A. (2002). Radar hydrology: rainfall estimation. Adv. Water Resour., 25, 1387–94.CrossRefGoogle Scholar
Kummerow, C., Simpson, J., Thiele, O.et al. (2000). The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965–82.2.0.CO;2>CrossRefGoogle Scholar
Kump, L. R. (2002). Reducing uncertainty about carbon dioxide as a climate driver. Nature, 419, 188–90.CrossRefGoogle ScholarPubMed
Kundzewicz, Z. W. (2002). Floods in the context of climate change and variability. In Climatic Change: Implications for the Hydrological Cycle and for Water Management, ed. Beniston, M.. Dordrecht: Kluwer Academic Publishers, pp. 225–47.CrossRefGoogle Scholar
Kunkel, K. E. (1996). A hydroclimatological assessment of the rainfall. In The Great Flood of 1993: Causes, Impacts, and Responses, ed. Changnon, S. A.. Boulder, CO: Westview Press, pp. 52–67.Google Scholar
Kunkel, K. E., Changnon, S. A. and Angel, J. R. (1994). Climatic aspects of the 1993 upper Mississippi River basin flood. Bull. Amer. Meteor. Soc., 75, 811–22.2.0.CO;2>CrossRefGoogle Scholar
Kustas, W. P. and Norman, J. M. (1996). Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol. Sci. J., 41, 495–516.CrossRefGoogle Scholar
Kustas, W. P., Albertson, J. D., Scanlon, T. M. and Cahill, A. T. (2001). Issues in monitoring evapotranspiration with radiometric temperature observations. In Remote Sensing and Hydrology 2000, IAHS Publication No. 267, ed. Owe, M., Brubaker, K., Ritchie, J. and Rango, A.. Wallingford, UK: IAHS Press, pp. 239–45.Google Scholar
Ladurie, E. L. and Baulant, M. (1980). Grape harvests from the fifteenth through the nineteenth centuries. J. Interdis. Hist., 10, 839–49.CrossRefGoogle Scholar
Laing, A. G. (2003). Mesoscale meteorology: mesoscale convective systems. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 1251–61.CrossRefGoogle Scholar
Lakshmi, V., Wood, E. F. and Choudhury, B. J. (1997a). A soil-canopy-atmosphere model for use in satellite microwave remote sensing. J. Geophys. Res., 102, 6911–27.CrossRefGoogle Scholar
Lakshmi, V., Wood, E. F. and Choudhury, B. J. (1997b). Evaluation of special sensor microwave/imager satellite data for regional soil moisture estimation over the Red River Basin. J. Appl. Meteor., 36, 1309–28.2.0.CO;2>CrossRefGoogle Scholar
Lamb, H. H. (1982). Climate, History and the Modern World. London: Methuen and Co. Ltd.CrossRefGoogle Scholar
Langbein, W. G. (1967). Hydroclimate. In The Encyclopedia of Atmospheric Sciences and Astrogeology, ed. Fairbridge, R. W.. New York, NY: Reinhold, pp. 447–51.Google Scholar
Langenberg, H. (2002). Climate and water. Nature, 419, 187.Google Scholar
LaPenta, K. D., McNaught, B. J., Capriola, S. J.et al. (1995). The challenge of forecasting heavy rain and flooding throughout the eastern region of the national weather service. Part 1: Characteristics and events. Wea. Forecast., 10, 78–90.2.0.CO;2>CrossRefGoogle Scholar
Larson, L. W., Ferral, R. L., Strem, E. T.et al. (1995). Operational responsibilities of the National Weather Service river and flood program. Wea. Forecast., 10, 465–76.2.0.CO;2>CrossRefGoogle Scholar
Lawford, R. G., Stewart, R., Roads, J.et al. (2004). Advancing global- and continental-scale hydrometeorology: contributions of GEWEX hydrometeorology panel. Bull. Amer. Meteor. Soc., 85, 1917–30.CrossRefGoogle Scholar
Lean, J. and Rind, D. (2001). Earth's response to a variable sun. Science, 292, 234–6.CrossRefGoogle ScholarPubMed
Leathers, D. J. and Palecki, M. A. (1992). The Pacific/North American teleconnection pattern and United States climate. Part II: Temporal characteristics and index specification. J. Climate, 5, 707–16.2.0.CO;2>CrossRefGoogle Scholar
Leathers, D. J., Yarnal, B. and Palecki, M. A. (1991). The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517–28.2.0.CO;2>CrossRefGoogle Scholar
Leconte, R., Brissette, F., Galarneau, M. and Rousselle, J. (2004). Mapping near-surface soil moisture with RADARSAT-1 synthetic aperture radar data. Water Resour. Res 40, WO1515, doi:10.1029/2003WR002312.CrossRefGoogle Scholar
Lee, S., Klein, A. and Over, T. (2004). Effects of the El Niño-Southern Oscillation on temperature, precipitation, snow water equivalent and resulting streamflow in the Upper Rio Grande river basin. Hydrol. Process., 18, 1053–71.CrossRefGoogle Scholar
Leese, J., Williams, S., Jenne, R. and Ritchie, A. (2003). Data collection and management for Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP). J. Geophys. Res., 108, 8620, doi:10.1029/2002JD003196.CrossRefGoogle Scholar
Legates, D. R. (2000a). Real-time calibration of radar precipitation estimates. Prof. Geogr., 52, 235–46.CrossRefGoogle Scholar
Legates, D. R. (2000b). Remote sensing in hydroclimatology: an introduction. Prof. Geogr., 52, 233–4.CrossRefGoogle Scholar
Legates, D. R. and Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111–27.CrossRefGoogle Scholar
Lehner, B. and Döll, P. (2004). Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol., 296, 1–22.CrossRefGoogle Scholar
LeMone, M. A., Grossman, R. L., Coulter, R. L.et al. (2000). Land-atmosphere interaction research, early results, and opportunities in the Walnut River Watershed in southeast Kansas: CASES and ABLE. Bull. Amer. Meteor. Soc., 81, 757–79.2.3.CO;2>CrossRefGoogle Scholar
LeQuesne, C., Stahle, D. W., Cleaveland, M. K.et al. (2006). Ancient Austrocedrus tree-ring chronologies used to reconstruct central Chile precipitation variability from A.D. 1200 to 2000. J. Climate, 19, 5731–44.CrossRefGoogle Scholar
Li, J., Menzel, W. P., Sun, F., Schmit, T. J. and Gurka, J. (2004a). AIRS subpixel cloud characterization using MODIS cloud products. J. Appl. Meteor., 43, 1083–94.2.0.CO;2>CrossRefGoogle Scholar
Li, J., Menzel, W. P., Zhang, W.et al. (2004b). Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters. J. Appl. Meteor., 43, 1619–34.CrossRefGoogle Scholar
Linacre, E. (1992). Climate Data and Resources: A Reference and Guide. London: Routledge.CrossRefGoogle Scholar
Linacre, E. and Geerts, B. (1997). Climates and Weather Explained. London: Routledge.CrossRefGoogle Scholar
Lins, H. F. and Slack, J. R. (1999). Streamflow trends in the United States. Geophys. Res. Lett., 26, 227–30.CrossRefGoogle Scholar
Linsley, B. K., Wellington, G. M. and Schrag, D. P. (2000). Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D.Science, 290, 1145–48.CrossRefGoogle ScholarPubMed
Liou, Y-C. (2002). An explanation of the wind speed underestimation obtained from a least squares type single-Doppler radar velocity retrieval method. J. Appl. Meteor., 41, 811–23.2.0.CO;2>CrossRefGoogle Scholar
Liu, A. Z., Ting, M. and Wang, H. (1998). Maintenance of circulation anomalies during the 1988 drought and 1993 floods over the United States. J. Atmos. Sci., 55, 2810–32.2.0.CO;2>CrossRefGoogle Scholar
Liu, G. (2003). Satellite remote sensing: precipitation. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 1972–9.CrossRefGoogle Scholar
Liu, J., Chen, J. M. and Cihlar, J. (2003). Mapping evapotranspiration based on remote sensing: an application to Canada's landmass. Water Resour. Res., 39, 1189, doi:10.1029/2002WR001680.CrossRefGoogle Scholar
Liu, Q. and Weng, F. (2005). One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from advanced microwave sounding unit (AMSU). IEEE Trans. Geosci. Remote Sens., 43, 1087–95.Google Scholar
Liu, W. T. (2003). Satellite remote sensing: surface wind. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 1979–85.CrossRefGoogle Scholar
Lloyd-Hughes, B. and Saunders, M. A. (2002). A drought climatology for Europe. Int. J. Climatol., 22, 1571–92.CrossRefGoogle Scholar
Loáiciga, H. A. (2005). On the probability of droughts: the compound renewal model. Water Resour. Res., 41, W01009, doi:10.1029/2004WR003075.CrossRefGoogle Scholar
Loáiciga, H. A., Haston, L. and Michaelsen, J. (1993). Dendrohydrology and long-term hydrologic phenomena. Rev. Geophys., 31, 151–71.CrossRefGoogle Scholar
Lockwood, J. G. (2001). Abrupt and sudden climatic transitions and fluctuations: a review. Int. J. Climatol., 21, 1153–79.CrossRefGoogle Scholar
Lohmann, D., Raschke, E., Nijssen, B. and Lettenmaier, D. P. (1998). Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131–41.CrossRefGoogle Scholar
Long, M., Entekhabi, D. and Nicholson, S. E. (2000). Interannual variability in rainfall, water vapor flux, and vertical motion over West Africa. J. Climate, 13, 3827–41.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, D. J. and Hartmann, D. L. (2006). The effect of the MJO on the North American monsoon. J. Climate, 19, 333–43.CrossRefGoogle Scholar
Lott, J. N. (1994). The US summer of 1993: a sharp contrast in weather extremes. Weather, 49, 370–83.CrossRefGoogle Scholar
Luce, C. H. (1995). Forests and wetlands. In Environmental Hydrology, ed. Ward, A. D. and Elliot, W. J.. New York, NY: Lewis Publishers, pp. 253–83.Google Scholar
Luers, J. K. and Eskridge, R. E. (1998). Use of radiosonde temperature data in climate studies. J. Climate, 11, 1002–19.2.0.CO;2>CrossRefGoogle Scholar
Lull, H. W. (1964). Ecological and silviculture aspects. In Handbook of Applied Hydrology: A Compendium of Water-Resources Technology, ed. Chow, V. T.. New York, NY: McGraw-Hill, Section 6, pp. 1–30.Google Scholar
Lundberg, A., Eriksson, M., Halldin, I. S., Kellner, E. and Seibert, J. (1997). New approach to the measurement of interception evaporation. J. Atmos. Oceanic Technol., 14, 1023–35.2.0.CO;2>CrossRefGoogle Scholar
Lydolph, P. E. (1985). The Climate of the Earth. Totowa, NJ: Rowman and Allanheld Publishers.Google Scholar
Lyon, B. (2003). Enhanced seasonal rainfall in northern Venezuela and the extreme events of December 1999. J. Climate, 16, 2302–6.CrossRefGoogle Scholar
Madden, R. A. and Julian, P. R. (1994). Observations of the 40–60 day tropical oscillation – a review. Mon. Wea. Rev., 122, 814–35.2.0.CO;2>CrossRefGoogle Scholar
Maddox, R. A., Canova, F. and Hoxit, L. R. (1980). Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 1866–77.2.0.CO;2>CrossRefGoogle Scholar
Maddox, R. A., Chappell, C. F. and Hoxit, L. R. (1979). Synoptic and meso-scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115–23.CrossRefGoogle Scholar
Maddox, R. A., Hoxit, L. R., Chappell, C. F. and Caracena, F. (1978). Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Mon. Wea. Rev., 106, 375–89.2.0.CO;2>CrossRefGoogle Scholar
Maidment, D. R., ed. (1993). Handbook of Hydrology. New York, NY: McGraw-Hill, Inc.
Mancini, M., Hoeben, R. and Troch, P. A. (1999). Multifrequency radar observations of bare surface soil moisture content: a laboratory experiment. Water Resour. Res., 35, 1827–38.CrossRefGoogle Scholar
Mansell, M. G. (2003). Rural and Urban Hydrology. London: Thomas Telford Publishing.CrossRefGoogle Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. and Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–79.2.0.CO;2>CrossRefGoogle Scholar
Mao, L. M., Bergman, M. J. and Tai, C. C. (2002). Evapotranspiration measurement and estimation of three wetland environments in the upper St. Johns River Basin, Florida. J. Amer. Water Resour. Assoc., 38, 1271–85.CrossRefGoogle Scholar
Marks, D. and Winstral, A. (2001). Comparison of snow deposition, the snow cover energy balance, and snowmelt at two sites in a semiarid mountain basin. J. Hydrometeor., 2, 213–27.2.0.CO;2>CrossRefGoogle Scholar
Mather, J. R. (1991). A history of hydroclimatology. Phys. Geogr., 12, 260–73.Google Scholar
Mather, J. R. and Ambroziak, R. A. (1986). A search for understanding potential evapotranspiration. Geogr. Rev., 76, 355–70.CrossRefGoogle Scholar
Mather, J. R. and Sdasyuk, G. V., ed. (1991). Global Change: Geographical Approaches. Tucson, AZ: University of Arizona Press.Google Scholar
Matthai, H. F. (1990). Floods. In Surface Water Hydrology, ed. Wolman, M. G. and Riggs, H. C.. The Geology of North America, Vol. O-1. Boulder, CO: Geological Society of America, pp. 97–120.Google Scholar
Matrosov, S. Y. (1998). A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37, 1510–21.2.0.CO;2>CrossRefGoogle Scholar
Mays, L. W. (2005). Water Resources Engineering. New York, NY: John Wiley and Sons.Google Scholar
McCabe, G. J. and Dettinger, M. D. (1999). Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol., 19, 1399–1410.3.0.CO;2-A>CrossRefGoogle Scholar
McCabe, G. J. and Dettinger, M. D. (2002). Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeor., 3, 13–25.2.0.CO;2>CrossRefGoogle Scholar
McCabe, G. J., Barker, J. L. and Chase, E. B. (1991). Review of water year 1988 hydrologic conditions and water-related events. In National Water Summary 1988–89 – Hydrologic Events and Floods and Droughts. U.S. Geological Survey Water-Supply Paper 2375. Washington, D.C.: U.S. Government Printing Office, pp. 14–18.Google Scholar
McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M. and Wood, E. F. (2006). A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett., 33, L06715, doi:10.1029/2006GL025753.CrossRefGoogle Scholar
McCuen, R. H. (2005) Hydrologic Analysis and Design. 3rd edn. Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar
McKee, T. B., Doesken, N. J. and Kleist, J. (1993). The relationship of drought frequency and duration to times scales. In Proceedings Eighth Conference on Applied Climatology. Boston, MA: American Meteorological Society, pp. 179–84.Google Scholar
McKenney, M. S. and Rosenberg, N. J. (1993). Sensitivity of some potential evapotranspiration estimation methods to climate change. Agric. Forest Meteor., 64, 81–110.CrossRefGoogle Scholar
McNab, A. L. and Karl, T. R. (1991). Climate and droughts. In National Water Summary 1988–89 – Hydrologic Events and Floods and Droughts. U.S. Geological Survey Water-Supply Paper 2375. Washington, D.C.: U.S. Government Printing Office, pp. 89–98.Google Scholar
Meehl, G. A., Karl, T., Easterling, D. R.et al. (2000). An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull. Amer. Meteor. Soc., 81, 413–6.2.3.CO;2>CrossRefGoogle Scholar
Meier, M. F. (1990). Snow and ice. In Surface Water Hydrology, ed. Wolman, M. G. and Riggs, H. C.. The Geology of North America, Vol. 0–1. Boulder, CO: Geological Society of America, pp. 131–58.Google Scholar
Meijninger, W. M. L. and Bruin, H. A. R. (2000). The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer. J. Hydrol., 229, 42–9.CrossRefGoogle Scholar
Meijninger, W. M. L., Green, A. E., Hartogensis, O. K.et al. (2002). Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface – Flevoland field experiment. Bound.-Layer Meteor., 105, 63–83.CrossRefGoogle Scholar
Meko, D. M., Therrell, M. D., Baisan, C. H. and Hughes, M. K. (2001). Sacramento River flow reconstructed to A.D. 869 from tree rings. J. Amer. Water Resour. Assoc., 37, 1029–39.CrossRefGoogle Scholar
Melack, J. M. (1992). Reciprocal interactions among lakes, large rivers, and climate. In Global Climate Change and Freshwater Resources, ed. Firth, P. and Fisher, S. G.. New York, NY: Springer-Verlag, pp. 68–87.CrossRefGoogle Scholar
Mendoza, B., Velasco, V. and Jáuregui, E. (2006). A study of historical droughts in southeastern Mexico. J. Climate, 19, 2916–34.CrossRefGoogle Scholar
Menzel, L., Niehoff, D., Bürger, G. and Bronstert, A. (2002). Climate change impacts on river flooding: a modeling study of three meso-scale catchments. In Climatic Change: Implications for the Hydrological Cycle and for Water Management, ed. Beniston, M.. Dordrecht: Kluwer Academic Publishers, pp. 249–69.CrossRefGoogle Scholar
Menzel, W. P. (2001). Cloud tracking with satellite imagery: from the pioneering work of Ted Fujita to the present. Bull. Amer. Meteor. Soc., 82, 33–47.2.3.CO;2>CrossRefGoogle Scholar
Menzel, W. P. and Purdom, J. F. W. (1994). Introducing GOES-I: the first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc., 75, 757–81.2.0.CO;2>CrossRefGoogle Scholar
Menzel, W. P., Holt, F. C., Schmit, T. J.et al. (1998). Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc., 79, 2059–77.2.0.CO;2>CrossRefGoogle Scholar
Merz, R. and Blöschl, G. (2003). A process typology of regional floods. Water Resour. Res., 39, 1340, doi:10.1029/2002WR001952.CrossRefGoogle Scholar
Michel, C., Andréassian, V. and Perrin, C. (2005). Soil conservation service curve number method: how to mend a wrong soil moisture accounting procedure?Water Resour. Res., 41, W02011, doi:10.1029/2004WR003191.CrossRefGoogle Scholar
Miller, A. J. and Schneider, N. (2000). Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observations and ecosystem impacts. Progr. Oceanogr., 47, 355–79.CrossRefGoogle Scholar
Miller, A. J., Cayan, D. R., Barnett, T. P., Graham, N. E. and Oberhuber, J. M. (1994). The 1976–77 climate shift of the Pacific Ocean. Oceanogr., 7, 21–6.CrossRefGoogle Scholar
Miller, D. H. (1977). Water at the Surface of the Earth: An Introduction to Ecosystem Hydrodynamics. New York, NY: Academic Press.Google Scholar
Miller, N. L., King, A. W., Miller, M. A.et al. (2005). The DOE Water Cycle Pilot Study. Bull. Amer. Meteor. Soc., 86, 359–74.CrossRefGoogle Scholar
Milly, P. C. D., Wetherald, R. T., Dunne, K. A. and Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415, 514–7.CrossRefGoogle Scholar
Miloshevich, L. M., Paukkunen, A., Vömel, H. and Oltmans, S.J. (2004). Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21, 1305–27.2.0.CO;2>CrossRefGoogle Scholar
Mo, K. C., Nogues-Paegle, J. and Higgins, R. W. (1997). Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10, 3028–46.2.0.CO;2>CrossRefGoogle Scholar
Mo, K. C., Nogues-Paegle, J. and Paegle, J. (1995). Physical mechanisms of the 1993 summer floods. J. Atmos. Sci., 52, 879–95.2.0.CO;2>CrossRefGoogle Scholar
Mo, R., Fyfe, J. and Derome, J. (1998). Phase-locked and asymmetric correlations of the wintertime atmospheric patterns with the ENSO. Atmos.-Ocean, 36, 213–39.CrossRefGoogle Scholar
Mo, X., Liu, S., Lin, Z. and Zhao, W. (2004). Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. J. Hydrol., 285, 125–42.CrossRefGoogle Scholar
Mokhov, I. I., Khvorostyanov, D. V. and Eliseev, A. V. (2004). Decadal and longer term changes in El Niño-Southern Oscillation characteristics. Int. J. Climatol., 24, 401–14.CrossRefGoogle Scholar
Montaldo, N., Mancini, M. and Rosso, R. (2004). Flood hydrograph attenuation induced by a reservoir system: analysis with a distributed rainfall-runoff model. Hydrol. Process., 18, 545–63.CrossRefGoogle Scholar
Monteith, J. L. (1965). Evaporation and environment. In The State and Movement of Water in Living Organisms, 19th Symposium of the Society for Experimental Biology. London: Cambridge University Press, pp. 205–34.Google Scholar
Moody, J. A. (1995). Propagation and Composition of the Flood Wave on the Upper Mississippi River Basin, 1993. U.S. Geological Survey Circular 1120-F. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Moran, M. S., Kustas, W. P., Vidal, A.et al. (1994). Use of ground-based remotely sensed data for surface energy balance evaluation of a semiarid rangeland. Water Resour. Res., 30, 1339–49.CrossRefGoogle Scholar
Morss, R. E., Wilhelmi, O. V., Downton, M. W. and Gruntfest, E. (2005). Flood risk, uncertainty, and scientific information for decision making: lessons from an interdisciplinary project. Bull. Amer. Meteor. Soc., 86, 1593–1601.CrossRefGoogle Scholar
Mosley, M. P. and McKerchar, A. I. (1993). Streamflow. In Handbook of Hydrology, ed. Maidment, D. R.. New York, NY: McGraw-Hill, Inc., pp. 8.1–8.39.Google Scholar
Mossin, L. and Ladekarl, U. L. (2004). Simple water balance modelling with few data – calibration and evaluation: investigations from a Danish Sitka spruce stand with a high interception loss. Nordic Hydrol., 35, 139–51.CrossRefGoogle Scholar
Nace, R. L. (1974). General evolution of the concept of the hydrological cycle. In Three Centuries of Scientific Hydrology. Paris: UNESCO–WMO–IAHS, pp. 40–8.Google Scholar
Nair, U. S., Hjelmfelt, M. R. and Pielke Sr., R. A. (1997). Numerical simulation of the 9–10 June 1972 Black Hills storm using CSU RAMS. Mon. Wea. Rev., 125, 1753–66.2.0.CO;2>CrossRefGoogle Scholar
Namias, J. (1978). Multiple causes of the North American abnormal winter 1976–77. Mon. Wea. Rev., 106, 279–95.2.0.CO;2>CrossRefGoogle Scholar
Namias, J. (1983). Some causes of United States drought. J. Climate Appl. Meteor., 22, 30–9.2.0.CO;2>CrossRefGoogle Scholar
Namias, J. (1991). Spring and summer 1988 drought over the contiguous United States – causes and prediction. J. Climate, 4, 54–65.2.0.CO;2>CrossRefGoogle Scholar
,National Oceanic and Atmospheric Administration (NOAA). (1994). The Great Flood of 1993. Natural Disaster Survey Report. U.S. Department of Commerce. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Neary, V. S., Habib, E. and Fleming, M. (2004). Hydrologic modeling with NEXRAD precipitation in middle Tennessee. J. Hydrol. Eng., 9, 339–49.CrossRefGoogle Scholar
New, M., Todd, M., Hulme, M. and Jones, P. (2001). Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 1899–1922.CrossRefGoogle Scholar
Nicholson, S. E. (1993). An overview of African rainfall fluctuations of the last decade. J. Climate, 6, 1463–6.2.0.CO;2>CrossRefGoogle Scholar
Nicholson, S. E., Some, B. and Kone, B. (2000). An analysis of recent rainfall conditions in west Africa, including the rainy seasons of the 1997 El Niño and the 1998 La Niña years. J. Climate, 13, 2628–40.2.0.CO;2>CrossRefGoogle Scholar
Nicholson, S. E., Tucker, C. J. and Ba, M. B. (1998). Desertification, drought, and surface vegetation: an example from the west African Sahel. Bull. Amer. Meteor. Soc., 79, 815–29.2.0.CO;2>CrossRefGoogle Scholar
Niemann, J. D. and Eltahir, E. A. B. (2004). Prediction of regional water balance components based on climate, soil, and vegetation parameters, with application to the Illinois River Basin. Water Resour. Res., 40, W03103, doi:10.1029/2003WR002806.CrossRefGoogle Scholar
Nigam, S., Barlow, M. and Berbery, E. H. (1999). Analysis links Pacific decadal variability to drought and streamflow in United States. Eos, Trans. Amer. Geophys. Un., 80, 621.CrossRefGoogle Scholar
Nissen, R., Hudak, D., Laroche, S.et al. (2001). 3D wind field retrieval applied to snow events using Doppler radar. J. Atmos. Oceanic Technol., 18, 348–62.2.0.CO;2>CrossRefGoogle Scholar
Njoku, E. G., Jackson, T. J., Lakshmi, V., Chan, T. K. and Nghiem, S. V. (2003). Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215–29.CrossRefGoogle Scholar
Nokes, S. E. (1995). Evapotranspiration. In Environmental Hydrology, ed. Ward, A. D. and Elliot, W. J.. New York, NY: Lewis Publishers, pp. 91–131.Google Scholar
Norman, J. M., Anderson, M. C., Kustas, W. P.et al. (2003). Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res., 39, 1221, doi:10.1029/2002WR001775.CrossRefGoogle Scholar
Ntale, H. K. and Gan, T. Y. (2003). Drought indices and their application to East Africa. Int. J. Climatol., 23, 1335–57.CrossRefGoogle Scholar
O'Connor, J. E. and Costa, J. E. (2004a). Spatial distribution of the largest rainfall-runoff floods from basins between 2.6 and 26,000 km2 in the United States and Puerto Rico. Water Resour. Res., 40, W01107, doi:10.1029/2003WR002247.CrossRefGoogle Scholar
O'Connor, J. E. and Costa, J. E. (2004b). The World's Largest Floods, Past and Present: Their Causes and Magnitudes. U.S. Geological Survey Circular 1254. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Ogden, F. L., Sharif, H. O., Senarath, S. U. S.et al. (2000). Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997. J. Hydrol., 228, 82–100.CrossRefGoogle Scholar
Ohmura, A. (2001). Physical basis for the temperature-based melt-index method. J. Appl. Meteor., 40, 753–61.2.0.CO;2>CrossRefGoogle Scholar
Ohmura, A., Dutton, E. G., Forgan, B.et al. (1998). Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 2115–36.2.0.CO;2>CrossRefGoogle Scholar
Oke, T. R. (1987). Boundary Layer Climates. 2nd edn. London: Methuen and Company.Google Scholar
Oki, T. (1999). The global water cycle. In Global Energy and Water Cycles, ed. Browning, K. A. and Gurney, R. J.. Cambridge: Cambridge University Press, pp. 10–27.Google Scholar
Oudin, L., Hervieu, F., Michel, C., Perrin, C.et al. (2005). Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 – Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J. Hydrol., 303, 290–306.CrossRefGoogle Scholar
Owe, M., Brubaker, K., Ritchie, J. and Rango, A., ed. (2001). Remote Sensing and Hydrology 2000. IAHS Publication No. 267. Wallingford, UK: International Association of Hydrological Sciences.Google Scholar
Päätalo, M-L. (1998). Factors influencing occurrence and impacts of fires in northern European forests. Silva Fennica, 32, 185–202.CrossRefGoogle Scholar
Paegle, J., Mo, K. C. and Nogues-Paegle, J. (1996). Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods. Mon. Wea. Rev., 124, 345–61.2.0.CO;2>CrossRefGoogle Scholar
Pal, J. S., Giorgi, F. and Bi, X. (2004). Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys. Res. Lett., 31, L13202, doi:10.1029/2004GLO19836.CrossRefGoogle Scholar
Palmer, W. C. (1965). Meteorological Drought: Its Measurement and Description. U.S. Weather Bureau, Research Paper No. 45. Washington, D.C.: U.S. Department of Commerce.Google Scholar
Parker, D. E., Alexander, L. V. and Kennedy, J. (2004). Global and regional climate in 2003. Weather, 59, 145–52.CrossRefGoogle Scholar
Parker, D. E., Basnett, T. A., Brown, S. J.et al. (2000). Climate observations – the instrumental record. Space Sci. Rev., 94, 309–20.CrossRefGoogle Scholar
Parkinson, C. L. (2003). Aqua: an earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173–83.CrossRefGoogle Scholar
Parlange, M. B., Eichinger, W. E. and Albertson, J. D. (1995). Regional scale evaporation and the atmospheric boundary layer. Rev. Geophys., 33, 99–124.CrossRefGoogle Scholar
Parrett, C., Melcher, N. B. and James, R. W. (1993). Flood Discharges in the Upper Mississippi River Basin, 1993. U.S. Geological Survey Circular 1120-A. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Paulson, R. W., Chase, E. B., Roberts, R. S. and Moody, D. W., comp. (1991). National Water Summary 1988–89 – Hydrologic Events and Floods and Droughts. U.S. Geological Survey Water-Supply Paper 2375. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Paw U, K. T., Qiu, J., Su, H. B., Watanabe, T. and Brunet, Y. (1995). Surface renewal analysis: a new method to obtain scalar fluxes. Agric. Forest Meteor., 74, 119–37.CrossRefGoogle Scholar
Paw U, K. T., Wharton, S. and Kochendorfer, J. (2004). Evapotranspiration: measuring and modeling. Acta Hort., 664, 537–54.CrossRefGoogle Scholar
Pazwash, H. and Mavrigian, G. (1981). Millennial celebration of Karaji's hydrology. Proc. ASCE, J. Hydraulics Div., 107, 303–9.Google Scholar
Peck, E. L. (1997). Quality of hydrometeorological data in cold regions. J. Amer. Water Resour. Assoc., 33, 125–34.CrossRefGoogle Scholar
Pederson, N., Jacoby, G. C., D'Arrigo, R. D.et al. (2001). Hydrometeorological reconstructions for northeastern Mongolia derived from tree rings: 1651–1995. J. Climate, 14, 872–81.2.0.CO;2>CrossRefGoogle Scholar
Peel, M. C., McMahon, T. A. and Finlayson, B. L. (2002). Variability of annual precipitation and its relationship to the El Niño-Southern Oscillation. J. Climate, 15, 545–51.2.0.CO;2>CrossRefGoogle Scholar
Peel, M. C., McMahon, T. A., Finlayson, B. L. and Watson, F. G. R. (2001). Identification and explanation of continental differences in the variability of annual runoff. J. Hydrol., 250, 224–40.CrossRefGoogle Scholar
Peixoto, J. P. (1995). The role of the atmosphere in the water cycle. In The Role of Water and the Hydrological Cycle in Global Change, ed. Oliver, H. R. and Oliver, S. A.. Berlin: Springer-Verlag, pp. 199–252.CrossRefGoogle Scholar
Peixoto, J. P. and Oort, A. H. (1992). Physics of Climate. New York, NY: American Institute of Physics.Google Scholar
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. A, 193, 120–45.CrossRefGoogle Scholar
Pérez, I. A., García, M. A., Sánchez, M. L. and Torre, B. (2004). Autocorrelation analysis of meteorological data from a RASS sodar. J. Appl. Meteor., 43, 1213–23.2.0.CO;2>CrossRefGoogle Scholar
Perry, C. A. (1994). Effects of Reservoirs on Flood Discharges in the Kansas and the Missouri River Basins, 1993. U.S. Geological Survey Circular 1120-E. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Peters, G., Fischer, B. and Kirtzel, H. J. (1998). One-year operational measurements with a sonic anemometer-thermometer and a Doppler sodar. J. Atmos. Oceanic Technol., 15, 18–28.2.0.CO;2>CrossRefGoogle Scholar
Petersen, A. C. (2000). Philosophy of climate science. Bull. Amer. Meteor. Soc., 81, 265–71.2.3.CO;2>CrossRefGoogle Scholar
Petersen, W. A., Carey, L. D., Rutledge, S. A.et al. (1999). Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191–216.2.0.CO;2>CrossRefGoogle Scholar
Peterson, B. J., Holmes, R. M., McClelland, J. W.et al. (2002). Increasing river discharge to the Arctic Ocean. Science, 298, 2171–3.CrossRefGoogle ScholarPubMed
Peterson, T., Daan, H. and Jones, P. (1997). Initial selection of a GCOS surface network. Bull. Amer. Meteor. Soc., 78, 2145–52.2.0.CO;2>CrossRefGoogle Scholar
Pfister, C. (1980). The little ice age: thermal and wetness indices for central Europe. J. Interdis. Hist., 10, 665–96.CrossRefGoogle Scholar
Pfister, C. (1995). Monthly temperature and precipitation in central Europe 1525–1979: quantifying documentary evidence on weather and its effects. In Climate Since A.D. 1500, ed. Bradley, R. S. and Jones, P. D.. London: Routledge, pp. 118–42.Google Scholar
Philip, J. R. (1957). The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci., 84, 257–64.CrossRefGoogle Scholar
Philipona, R., Fröhlich, C., Dehne, K.et al. (1998). The baseline surface radiation network pyrgeometer round-robin calibration experiment. J. Atmos. Oceanic Technol., 15, 687–96.2.0.CO;2>CrossRefGoogle Scholar
Pierrehumbert, R. T. (2002). The hydrologic cycle in deep-time climate problems. Nature, 419, 191–8.CrossRefGoogle ScholarPubMed
Pilgrim, D. H. and Cordery, I. (1993). Flood runoff. In Handbook of Hydrology, ed. Maidment, D. R.. New York, NY: McGraw-Hill, Inc., pp. 9.1–9.42.Google Scholar
Plüss, C. and Ohmura, A. (1997). Longwave radiation on snow-covered mountainous surfaces. J. Appl. Meteor., 36, 818–24.CrossRefGoogle Scholar
Pomeroy, J. W., Toth, B., Granger, R. J., Hedstrom, N. R. and Essery, R. L. H. (2003). Variation in surface energetics during snowmelt in a subarctic mountain catchment. J. Hydrometeor., 4, 702–19.2.0.CO;2>CrossRefGoogle Scholar
Pontrelli, M. D., Bryan, G. and Fritsch, J. M. (1999). The Madison County, Virginia, flash flood of 27 June 1995. Wea. Forecast., 14, 384–404.2.0.CO;2>CrossRefGoogle Scholar
Pozo-Vázquez, D., Esteban-Parra, M. J., Rodrigo, F. S. and Castro-Díez, Y. (2001). The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region. J. Climate, 14, 3408–20.2.0.CO;2>CrossRefGoogle Scholar
Priestley, C. H. B. and Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large scale parameters. Mon. Wea. Rev., 100, 81–92.2.3.CO;2>CrossRefGoogle Scholar
Pumijumnong, N. (1999). Climate-growth relationships of teak (Tectona grandis L.) from northern Thailand. In Tree-Ring Analysis: Biological, Methodological and Environmental Aspects, ed. Wimmer, R. and Vetter, R. E.. Wallingford, UK: CABI Publishing, pp. 155–68.Google Scholar
Pypker, T. G., Bond, B. J., Link, T. E., Marks, D. and Unsworth, M. H. (2005). The importance of canopy structure in controlling the interception loss of rainfall: examples from a young and an old-growth Douglas-fir forest. Agric. Forest Meteor., 130, 113–29.CrossRefGoogle Scholar
Quesney, A., Hégarat-Mascle, S., Taconet, O.et al. (2000). Estimation of watershed soil moisture index from ERS/SAR data. Remote Sens. Environ., 72, 290–303.CrossRefGoogle Scholar
Quinn, W. H. and Neal, V. T. (1992). The historical record of El Niño events. In Climate Since A.D. 1500, ed. Bradley, R. S. and Jones, P. D.. London: Routledge, pp. 623–48.Google Scholar
Raicich, F., Pinardi, N. and Navarra, A. (2003). Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean. Int. J. Climatol., 23, 173–86.CrossRefGoogle Scholar
Rajagopalan, B., Cook, E., Lall, U. and Ray, B. K. (2000). Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the twentieth century. J. Climate, 13, 4244–55.2.0.CO;2>CrossRefGoogle Scholar
Randall, D., Krueger, S., Bretherton, C.et al. (2003). Confronting models with data: the GEWEX cloud systems study. Bull. Amer. Meteor. Soc., 84, 455–69.CrossRefGoogle Scholar
Randel, D. L., Vonder Haar, T. H., Ringerud, M. A.et al. (1996). A new global water vapor dataset. Bull. Amer. Meteor. Soc., 77, 1233–46.2.0.CO;2>CrossRefGoogle Scholar
Rango, A. and Martinec, J. (1995). Revisiting the degree-day method for snowmelt computations. Water Resour. Bull., 31, 657–69.CrossRefGoogle Scholar
Rantz, S. E. (1972). Runoff Characteristics of California Streams. U.S. Geological Survey Water-Supply Paper 2009-A. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Raschke, E., Meywerk, J., Warrach, K.et al. (2001). The Baltic Sea Experiment (BALTEX): a European contribution to the investigation of the energy and water cycle over a large drainage basin. Bull. Amer. Meteor. Soc., 82, 2389–413.2.3.CO;2>CrossRefGoogle Scholar
Raschke, E., Vonder Haar, T. H., Bandeen, W. R. and Pasternak, M. (1973). The annual radiation balance of the earth-atmosphere system during 1969–70 from Nimbus 3 measurements. J. Atmos. Sci., 30, 341–64.2.0.CO;2>CrossRefGoogle Scholar
Rasmusson, E. M. (1987). Global prospects for the prediction of drought: a meteorological perspective. In Planning for Drought: Toward a Reduction of Societal Vulnerability, ed. Wilhite, D. A., Easterling, W. E. and Wood, D. A.. Boulder, CO: Westview Press, pp. 31–43.Google Scholar
Rawls, W. J., Ahuja, L. R., Brakensiek, D. L. and Shirmohammadi, A. (1993). Infiltration and soil water movement. In Handbook of Hydrology, ed. Maidment, D. R.. New York, NY: McGraw-Hill, Inc., pp. 5.1–5.51.Google Scholar
Rebetez, M., Mayer, H., Dupont, O.et al. (2006). Heat and drought 2003 in Europe: a climate synthesis. Ann. For. Sci., 63, 569–77.CrossRefGoogle Scholar
Regonda, S. K., Rajagopalan, B., Clark, M. and Pitlick, J. (2005). Seasonal cycle shifts in hydroclimatology over the western United States. J. Climate, 18, 372–84.CrossRefGoogle Scholar
Reichle, R. H., Koster, R. D., Dong, J. and Berg, A. A. (2004). Global soil moisture from satellite observations, land surface models, and ground data: implications for data assimilation. J. Hydrometeor., 5, 430–42.2.0.CO;2>CrossRefGoogle Scholar
Renwick, J. A. and Wallace, J. M. (1996). Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124, 2071–6.2.0.CO;2>CrossRefGoogle Scholar
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1, 318–33.CrossRefGoogle Scholar
Richner, H., Joss, J. and Ruppert, P. (1996). A water hypsometer utilizing high-precision thermocouples. J. Atmos. Oceanic Technol., 13, 175–82.2.0.CO;2>CrossRefGoogle Scholar
Riebsame, W. E., Changnon, Jr., S. A. and Karl, T. R. (1991). Drought and Natural Resources Management in the United States: Impacts and Implications of the 1987–89 Drought. Boulder, CO: Westview Press.Google Scholar
Risbey, J. S. and Kandlikar, M. (2002). Expert assessment of uncertainties in detection and attribution of climate change. Bull. Amer. Meteor. Soc., 83, 1317–26.CrossRefGoogle Scholar
Robertson, A. W. and Mechoso, C. R. (1998). Interannual and decadal cycles in river flows of southeastern South America. J. Climate, 11, 2570–81.2.0.CO;2>CrossRefGoogle Scholar
Robinson, D. A. and Frei, A. (2000). Seasonal variability of Northern Hemisphere snow extent using visible satellite data. Prof. Geogr., 52, 307–15.CrossRefGoogle Scholar
Robock, A. (2003). Hydrology: soil moisture. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 987–93.CrossRefGoogle Scholar
Robock, A., Konstantin, Y. V., Srinivasan, G.et al. (2000). The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81, 1281–99.2.3.CO;2>CrossRefGoogle Scholar
Robson, A. J., Jones, T. K., Reed, D. W. and Bayliss, A. C. (1998). A study of national trend and variation in UK floods. Int. J. Climatol., 18, 165–82.3.0.CO;2-#>CrossRefGoogle Scholar
Roebber, P. J., Bruening, S. L., Schultz, D. M. and CortinasJr., J. V. (2003). Improving snowfall forecasting by diagnosing snow density. Wea. Forecast., 18, 264–87.2.0.CO;2>CrossRefGoogle Scholar
Romanov, P., Gutman, G. and Csiszar, I. (2000). Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteor., 39, 1866–80.2.0.CO;2>CrossRefGoogle Scholar
Romero, R., DoswellIII, C. A. and Riosalido, R. (2001). Observations and fine-grid simulations of a convective outbreak in northeastern Spain: importance of diurnal forcing and convective cold pools. Mon. Wea. Rev., 129, 2157–82.2.0.CO;2>CrossRefGoogle Scholar
Ropelewski, C. F. (1988). The global climate for June-August 1988: a swing to the positive phase of the Southern Oscillation, drought in the United States, and abundant rain in monsoon areas. J. Climate, 1, 1153–74.2.0.CO;2>CrossRefGoogle Scholar
Rose, C. (2004). An Introduction to the Environmental Physics of Soil, Water and Watersheds. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rosen, R. D. (1999). The global energy cycle. In Global Energy and Water Cycles, ed. Browning, K. A. and Gurney, R. J.. Cambridge: Cambridge University Press, pp. 1–9.Google Scholar
Rosenberg, N. J., Blad, B. L. and Verma, S. B. (1983). Microclimate: The Biological Environment. 2nd edn. New York, NY: John Wiley and Sons.Google Scholar
Ross, R. J. and Elliott, W. P. (2001). Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Climate, 14, 1602–12.2.0.CO;2>CrossRefGoogle Scholar
Rossow, W. B., and Schiffer, R. A. (1999). Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–87.2.0.CO;2>CrossRefGoogle Scholar
Rouse, W. R., Blyth, E. M., Crawford, R. W.et al. (2003). Energy and water cycles in a high-latitude, north-flowing river system: summary of results from the Mackenzie GEWEX study – phase 1. Bull. Amer. Meteor. Soc., 84, 73–87.CrossRefGoogle Scholar
Rouse, W. R., Oswald, C. J., Binyamin, J.et al. (2005). The role of northern lakes in a regional energy balance. J. Hydrometeor., 6, 291–305.CrossRefGoogle Scholar
Rowell, D. P. (2003). The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Climate, 16, 849–62.2.0.CO;2>CrossRefGoogle Scholar
Rowntree, L. B. (1985). A crop-based rainfall chronology for pre-instrumental record southern California. Climatic Change, 7, 327–41.CrossRefGoogle Scholar
Rudolf, B. and Rapp, J. (2003). The Century Flood of the River Elbe in August 2002: Synoptic Weather Development and Climatological Aspects. Quarterly Report of the Operational NWP- Models of the Deutscher Wetterdienst, Special Topic July, pp. 7–22.
Running, S. W. (2006). Is global warming causing more, larger wildfires? Science, 313, 927–8.CrossRefGoogle ScholarPubMed
Rybski, D., Bunde, A., Havlin, S. and Storch, H. (2006). Long-term persistence in climate and the detection problem. Geophys. Res. Lett., 33, L06718, doi:10.1029/2005GL025591.CrossRefGoogle Scholar
Salby, M. L. (1996). Fundamentals of Atmospheric Physics. San Diego, CA: Academic Press.Google Scholar
Saltzman, B. (2002). Dynamical Paleoclimatology: Generalized Theory of Global Climate Change. San Diego, CA: Academic Press.Google Scholar
Salvucci, G. D., Saleem, J. A. and Kaufmann, R. (2002). Investigating soil moisture feedbacks on precipitation with tests of Granger causality. Adv. Water Resour., 25, 1305–12.CrossRefGoogle Scholar
Sankarasubramanian, A. and Vogel, R. M. (2002). Annual hydroclimatology of the United States. Water Resour. Res., 38, 1083, doi:10.1029/2001WR000619.CrossRefGoogle Scholar
Sankarasubramanian, A. and Vogel, R. M. (2003). Hydroclimatology of the continental United States. Geophys. Res. Lett., 30, 1363, doi:10.1029/2002GL015937.CrossRefGoogle Scholar
Sathiyamoorthy, V. (2005). Large scale reduction in the size of the Tropical Easterly Jet. Geophys. Res. Lett., 32, L14802, doi:10.1029/2005GL022956.CrossRefGoogle Scholar
Schär, C., Vidale, P. L., Lüthi, D.et al. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332–6.CrossRefGoogle ScholarPubMed
Schlosser, C. A. and Houser, P. R. (2007). Assessing a satellite-era perspective of the global water cycle. J. Climate, 20, 1316–38.CrossRefGoogle Scholar
Schmetz, J., Pili, P., Tjemkes, S.et al. (2002). An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977–92.CrossRefGoogle Scholar
Schmit, T. J., Feltz, W. F., Menzel, W. P.et al. (2002). Validation and use of GOES sounder moisture information. Wea. Forecast., 17, 139–54.2.0.CO;2>CrossRefGoogle Scholar
Schmugge, T. J., Kustas, W. P., Ritchie, J. C., Jackson, T. J. and Rango, A. (2002). Remote sensing in hydrology. Adv. Water Resour., 25, 1367–85.CrossRefGoogle Scholar
Schneider, J. M., Fisher, D. K., Elliott, R. L., Brown, G. O. and Bahrmann, C. P. (2003). Spatiotemporal variations in soil water: first results from the ARM SGP CART network. J. Hydrometeor., 4, 106–20.2.0.CO;2>CrossRefGoogle Scholar
Scofield, R. A. and Kuligowski, R. J. (2003). Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Wea. Forecast., 18, 1037–51.2.0.CO;2>CrossRefGoogle Scholar
Scott, N. A., Chédin, A., Armante, R.et al. (1999). Characteristics of the TOVS Pathfinder Path-B dataset. Bull. Amer. Meteor. Soc., 80, 2679–701.2.0.CO;2>CrossRefGoogle Scholar
Seidel, D. J., Angell, J. K., Christy, J.et al. (2004). Uncertainty in signals of large-scale climate variations in radiosonde and satellite upper-air temperature datasets. J. Climate, 17, 2225–40.2.0.CO;2>CrossRefGoogle Scholar
Seidel, K. and Martinec, J. (2004). Remote Sensing in Snow Hydrology: Runoff Modelling, Effect of Climate Change. Chichester: Springer-Praxis Publishing.Google Scholar
Shelton, M. L. (1978). Calibrations for computing Thornthwaite's potential evapotranspiration in California. Prof. Geogr., 30, 389–96CrossRefGoogle Scholar
Shelton, M. L. (1984). Hydroclimatic analysis of severe drought in the Sacramento River Basin, California. Phys. Geogr., 5, 262–86.Google Scholar
Shelton, M. L. (1988). Climate and Weather: A Spatial Perspective. Dubuque, IA: Kendall/Hunt Publishing Company.Google Scholar
Shelton, M. L. (1989). Spatial scale influences on modeled runoff for large watersheds. Phys. Geogr., 10, 368–83.Google Scholar
Shelton, M. L. (1995). Unimpaired and regulated discharge in the Sacramento River Basin, California. Yearbook Assoc. Pacific Coast Geogr., 57, 134–57.CrossRefGoogle Scholar
Shelton, M. L. (2001). Mesoscale atmospheric 2XCO2 climate change simulation applied to an Oregon watershed. J. Amer. Water Resour. Assoc., 37, 1041–52.CrossRefGoogle Scholar
Sherman, L. K. (1932). Stream flow from rainfall by unit hydrograph method. Eng. News-Record, 108, 501–5.Google Scholar
Shindell, D., Rind, D., Balachandran, N., Lean, J. and Lonergan, P. (1999). Solar cycle variability, ozone, and climate. Science, 284, 305–8.CrossRefGoogle ScholarPubMed
Shuttleworth, W. J. (1993). Evaporation. In Handbook of Hydrology, ed. Maidment, D. R.. New York, NY: McGraw-Hill, Inc., pp. 4.1–4.53.Google Scholar
Shuttleworth, W. J. (1995). Soil-vegetation-atmosphere relations: process and prospect. In The Role of Water and the Hydrologic Cycle in Global Change, ed. Oliver, H. R. and Oliver, S. A.. Berlin: Springer-Verlag, pp. 135–43.CrossRefGoogle Scholar
Siccardi, F., Boni, G., Ferraris, L. and Rudari, R. (2005). A hydrometeorological approach for probabilistic flood forecast. J. Geophys. Res., 110, D05101, doi:10.1029/2004JD005314.CrossRefGoogle Scholar
Slingo, J. M., Rowell, D. P., Sperber, K. R. and Nortley, F. (1999). On the predictability of the interannual behaviour of the Madden-Julian Oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583–609.Google Scholar
Smith, J. A., Baeck, M. L., Morrison, J. E. and Sturdevant-Rees, P. (2000). Catastrophic rainfall and flooding in Texas. J. Hydrometeor., 1, 5–25.2.0.CO;2>CrossRefGoogle Scholar
Smith, J. A., Baeck, M. L., Steiner, M. and Miller, A. J. (1996). Catastrophic rainfall from an upslope thunderstorm in the central Appalachians: the Rapidan storm of June 27, 1995. Water Resour. Res., 32, 3099–113.CrossRefGoogle Scholar
Smith, T. M., Yin, X. and Gruber, A. (2006). Variations in annual global precipitation (1979–2004), based on the Global Precipitation Climatology Project 2.5° analysis. Geophys. Res. Lett., 33, L06705, doi:10.1029/2005GL025393.CrossRefGoogle Scholar
Song, J., Wesely, M. L., Coulter, R. L. and Brandes, E. A. (2000a). Estimating watershed evapotranspiration with PASS. Part I: Inferring root-zone moisture conditions using satellite data. J. Hydrometeor., 1, 447–61.2.0.CO;2>CrossRefGoogle Scholar
Song, J., Wesely, M. L., LeMone, M. A. and Grossman, R. L. (2000b). Estimating watershed evapotranspiration with PASS. Part II: Moisture budgets during drydown periods. J. Hydrometeor., 1, 462–73.2.0.CO;2>CrossRefGoogle Scholar
Spano, D., Snyder, R. L., Duce, P. and PawU, K. T. U, K. T. (2000). Estimating sensible and latent heat flux densities from grapevine canopies using surface renewal. Agric. Forest Meteor., 104, 171–83.CrossRefGoogle Scholar
Speidel, D. H. and Agnew, A. F. (1988). The world water balance. In Perspectives on Water: Uses and Abuses, ed. Speidel, D. H., Ruedisili, L. C. and Agnew, A. F.. New York, NY: Oxford University Press, pp. 27–36.Google Scholar
Stahle, D. W. and Cleaveland, M. K. (1992). Reconstruction and analysis of spring rainfall over the southeastern U.S. for the past 1000 years. Bull. Amer. Meteor. Soc., 73, 1947–61.2.0.CO;2>CrossRefGoogle Scholar
Stedinger, J. R., Vogel, R. M. and Foufoula-Georgiou, E. (1993). Frequency analysis of extreme events. In Handbook of Hydrology, ed. Maidment, D. R.. New York, NY: McGraw-Hill, Inc., pp. 18.1–18.66.Google Scholar
Stewart, I. T., Cayan, D. R. and Dettinger, M. D. (2005). Changes toward earlier streamflow timing across western North America. J. Climate, 18, 1136–55.CrossRefGoogle Scholar
Stewart, R. E., Leighton, H. G., Marsh, P.et al. (1998). The Mackenzie GEWEX Study: the water and energy cycles of a major North American river basin. Bull. Amer. Meteor. Soc., 79, 2665–83.2.0.CO;2>CrossRefGoogle Scholar
Stockton, C. W. and Meko, D. M. (1990). Some aspects of the hydroclimatology of arid and semiarid lands. In Human Intervention in the Climatology of Arid Lands, ed. Haragan, D. R.. Albuquerque, NM: University of New Mexico Press, pp. 1–26.Google Scholar
Street-Perrott, F. A. (1995). Natural variability of tropical climates on 10- to 100- year time scales: limnological and paleolimnological evidence. In Natural Climate Variability on Decade-To-Century Time Scales, ed. Martinson, D. G., Bryan, K., Ghil, M.et al. Washington, D.C.: National Academy Press, pp. 506–11.Google Scholar
Stricker, J. N. M., Kim, C. P., Feddes, R. A.et al. (1993). The terrestrial hydrological cycle. In Energy and Water Cycles in the Climate System, ed. Raschke, E. and Jacob, D.. NATIO ASI Series, I 5. Berlin: Springer-Verlag, pp. 419–44.CrossRefGoogle Scholar
Sturm, M. (2003). Snow (surface). In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 2061–72.CrossRefGoogle Scholar
Sturman, A. P., Bradley, S., Drummond, P.et al. (2003). The Lake Tekapo Experiment (LTEX): an investigation of atmospheric boundary layer processes in complex terrain. Bull. Amer. Meteor. Soc., 84, 371–80.CrossRefGoogle Scholar
Sujono, J., Shikasho, S. and Hiramatsu, K. (2004). A comparison of techniques for hydrograph recession analysis. Hydrol. Process., 18, 403–13.CrossRefGoogle Scholar
Susskind, J., Barnet, C. D. and Blaisdell, J. M. (2003). Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390–409.CrossRefGoogle Scholar
Susskind, J., Piraino, P., Rokke, L., Iredell, L. and Mehta, A. (1997). Characteristics of the TOVS Pathfinder Path A dataset. Bull. Amer. Meteor. Soc., 78, 1449–72.2.0.CO;2>CrossRefGoogle Scholar
Suzuki, K. and Ohta, T. (2003). Effect of larch forest density on snow surface energy balance. J. Hydrometeor., 4, 1181–93.2.0.CO;2>CrossRefGoogle Scholar
Sveinsson, O. G. B., Salas, J. D., Boes, D. C. and Pielke Sr., R. A. (2003). Modeling the dynamics of long-term variability of hydroclimatic processes. J. Hydrometeor., 4, 489–505.2.0.CO;2>CrossRefGoogle Scholar
Svoboda, M., LeComte, D., Hayes, M.et al. (2002). The drought monitor. Bull. Amer. Meteor. Soc., 83, 1181–90.CrossRefGoogle Scholar
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. and Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376–80.CrossRefGoogle ScholarPubMed
Szilagyi, J. and Parlange, M. B. (1999). Defining watershed-scale evaporation using a normalized difference vegetation index. J. Amer. Water Resour. Assoc., 35, 1245–55.CrossRefGoogle Scholar
Tarhule, A. and Lamb, P. J. (2003). Climate research and seasonal forecasting for West Africans: perceptions, dissemination, and use?Bull. Amer. Meteor. Soc., 84, 1741–59.CrossRefGoogle Scholar
Taylor, C. M., Lambin, E. F., Stephenne, N., Harding, R. J. and Essery, R. L. H. (2002). The influence of land use change on climate in the Sahel. J. Climate, 15, 3615–29.2.0.CO;2>CrossRefGoogle Scholar
Tessier, L., Guibal, F. and Schweingruber, F. H. (1997). Research strategies in dendroecology and dendroclimatology in mountain environments. Clim. Change, 36, 499–517.CrossRefGoogle Scholar
Thiaw, W. M. and Mo, K. C. (2005). Impact of sea surface temperature and soil moisture on seasonal rainfall prediction over the Sahel. J. Climate, 18, 5330–43.CrossRefGoogle Scholar
Thorne, P. W., Parker, D. E., Christy, J. R. and Mears, C. A. (2005). Uncertainties in climate trends. Bull. Amer. Meteor. Soc., 86, 1437–42.CrossRefGoogle Scholar
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geogr. Rev., 38, 55–94.CrossRefGoogle Scholar
Thornthwaite, C. W. with Wilm, H. G. and others (1945). Report of the committee on transpiration and evaporation, 1943–1944. Trans. Amer. Geophys. Union, 25, 686–93.Google Scholar
Tootle, G. A. and Piechota, T. C. (2006). Relationships between Pacific and Atlantic Ocean sea surface temperatures and U.S. streamflow variability. Water Resour. Res., 42, W07411, doi:10.1029/2005WR004184.CrossRefGoogle Scholar
Trenberth, K. E. (1990). Recent observed interdecadal climate changes in the northern hemisphere. Bull. Amer. Meteor. Soc., 71, 988–93.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. (1998). Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Climatic Change, 39, 667–94.CrossRefGoogle Scholar
Trenberth, K. E. and Branstator, G. W. (1992). Issues in establishing causes of the 1988 drought over North America. J. Climate, 5, 159–72.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Caron, J. M. (2001). Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433–43.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Guillemot, C. J. (1996). Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 1288–98.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303–19.CrossRefGoogle Scholar
Trenberth, K. E. and Smith, L. (2005). The mass of the atmosphere: a constraint on global analyses. J. Climate, 18, 864–75.CrossRefGoogle Scholar
Trenberth, K. E. and Solomon, A. (1994). The global heat balance: heat transports in the atmosphere and ocean. Climate Dyn., 10, 107–34.CrossRefGoogle Scholar
Trenberth, K. E., Branstator, G. W. and Arkin, P. A. (1988). Origins of the 1988 North American drought. Science, 242, 1640–5.CrossRefGoogle ScholarPubMed
Trenberth, K. E., Caron, J. M., Stepaniak, D. P. and Worley, S. (2002). Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.CrossRefGoogle Scholar
Trenberth, K. E., Dai, A., Rasmussen, R. M. and Parsons, D. B. (2003). The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–17.CrossRefGoogle Scholar
Trigo, R. M., Pereira, J. M. C., Pereira, M. G.et al. (2006). Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int. J. Climatol., 26, 1741–57.CrossRefGoogle Scholar
Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J.et al. (2004). North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Penninsula. Int. J. Climatol., 24, 925–44.CrossRefGoogle Scholar
Turc, L. (1961). Estimate of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann. Agron., 12, 13–49.Google Scholar
Twine, T. E., Kucharik, C. J. and Foley, J. A. (2005). Effects of El Niño-Southern Oscillation on the climate, water balance, and streamflow of the Mississippi River basin. J. Climate, 18, 4840–61.CrossRefGoogle Scholar
Ulbrich, U., Brücher, T., Fink, A. H.et al. (2003a). The central European floods of August 2002: Part 1 – Rainfall periods and flood development. Weather, 58, 371–77.CrossRefGoogle Scholar
Ulbrich, U., Brücher, T., Fink, A. H.et al. (2003b). The central European floods of August 2002: Part 2 – Synoptic causes and considerations with respect to climatic change. Weather, 58, 434–42.CrossRefGoogle Scholar
Uppenbrink, J. (1999). The North Atlantic Oscillation. Science, 283, 948–9.CrossRefGoogle Scholar
Urbonas, B. R. and Roesner, L. A. (1993). Hydrologic design for urban drainage and flood control. In Handbook of Hydrology, ed. Maidment, D. R.. New York, NY: McGraw-Hill, Inc., pp. 28.1–28.52.Google Scholar
,U.S. Army Corps of Engineers (1956). Snow Hydrology: Summary Report of the Snow Investigations. Portland, OR: North Pacific Division.Google Scholar
,U.S. Soil Conservation Service (1964). Hydrology. In National Engineering Handbook. Section 4. Washington, D.C.: U.S. Soil Conservation Service.Google Scholar
,U.S. Soil Conservation Service (1970). Irrigation Water Requirements. Engineering Division, Tech. Release No. 21. Washington, D.C.:U.S. Government Printing Office.Google Scholar
,U.S. Soil Conservation Service (1986). Urban Hydrology for Small Watersheds. Tech. Release 55. Washington, D.C.:U.S. Department of Agriculture.Google Scholar
Verdon, D. C. and Franks, S. W. (2006). Long-term behaviour of ENSO: interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys. Res. Lett., 33, L06712, doi:10.1029/2005GL025052.CrossRefGoogle Scholar
Vicente, G. A., Scofield, R. A. and Menzel, W. P. (1998). The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 1883–98.2.0.CO;2>CrossRefGoogle Scholar
Vikulina, Z. A., Gronskaya, T. P., Kashinova, T. D. and Natrus, A. A. (1978). Water balance of lakes and reservoirs. In World Water Balance and Water Resources of the Earth, ed. Korzun, V. I.. Paris: UNESCO, pp. 533–44.Google Scholar
Villalba, R., Grau, H. R., Boninsegna, J. A., Jacoby, G. C. and Ripalta, A. (1998). Tree-ring evidence for long-term precipitation changes in subtropical South America. Int. J. Climatol., 18, 1463–78.3.0.CO;2-A>CrossRefGoogle Scholar
Vincent, R. K. (2003). Radar: synthetic aperture radar (land surface applications). In Encyclopedia of Atmospheric Sciences, ed. Holton, J.R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 1851–8.CrossRefGoogle Scholar
Vinnikov, K. Y., Robock, A., Qiu, S.et al. (1999). Satellite remote sensing of soil moisture in Illinois, United States. J. Geophys. Res., 104, 4145–68.CrossRefGoogle Scholar
Wahl, K. L., Vining, K. C. and Wiche, G. J. (1993). Precipitation in the Upper Mississippi River Basin, January 1 Through July 31, 1993. U.S. Geological Survey Circular 1120-B. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Waliser, D. E., Lau, K. M. and Kim, J.-H. (1999). The influence of coupled sea surface temperatures on the Madden-Julian Oscillation: a model perturbation experiment. J. Atmos. Sci., 56, 333–58.2.0.CO;2>CrossRefGoogle Scholar
Walker, G. T. (1923). World weather I. Mem. Indian Meteor. Depart., 24, 75–131.Google Scholar
Walker, W. R., Hrezo, M. S. and Haley, C. J. (1991). Management of water resources for drought conditions. In National Water Summary 1988–89 – Hydrologic Events and Floods and Droughts. U.S. Geological Survey Water-Supply Paper 2375. Washington, D.C.: U.S. Government Printing Office, pp. 147–56.Google Scholar
Wallace, J. M. and Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812.2.0.CO;2>CrossRefGoogle Scholar
Wang, G. and Schimel, D. (2003). Climate change, climate modes, and climate impacts. Ann. Rev. Environ. Resour., 28, 1–28.CrossRefGoogle Scholar
Ward, A. D. (1995). Surface runoff and subsurface drainage. In Environmental Hydrology, ed. Ward, A. D. and Elliot, W. J.. New York, NY: Lewis Publishers, pp. 133–73.Google Scholar
Ward, A. D. and Elliot, W. J., ed. (1995). Environmental Hydrology. New York, NY: Lewis Publishers.Google Scholar
Ward, R. C. and Robinson, M. (2000). Principles of Hydrology. 4th edn. London: McGraw-Hill.Google Scholar
Weaver, J. F., Gruntfest, E. and Levy, G. M. (2000). Two floods in Fort Collins, Colorado: learning from a natural disaster. Bull. Amer. Meteor. Soc., 81, 2359–66.2.3.CO;2>CrossRefGoogle Scholar
Wells, N., Goddard, S. and Hayes, M. J. (2004). A self-calibrating Palmer Drought Severity Index. J. Climate, 17, 2335–51.2.0.CO;2>CrossRefGoogle Scholar
Westerling, A. L., Cayan, D. R., Brown, T. J., Hall, B.I. and Riddle, L. G. (2004). Climate, Santa Ana winds and autumn wildfires in southern California. Eos, Trans. Amer. Geophys. Un., 85, 289–300.CrossRefGoogle Scholar
Westerling, A. L., Gershunov, A., Brown, T. J., Cayan, D. R. and Dettinger, M. D. (2003). Climate and wildfire in the western United States. Bull. Amer. Meteor. Soc., 84, 595–604.CrossRefGoogle Scholar
Westerling, A. L., Hidalgo, H. G., Cayan, D. R. and Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–3.CrossRefGoogle ScholarPubMed
Wetzel, M., Meyers, M., Borys, R.et al. (2004). Mesoscale snowfall prediction and verification in mountainous terrain. Wea. Forecast., 19, 806–28.2.0.CO;2>CrossRefGoogle Scholar
Wilheit, T., Kummerow, C. D. and Ferraro, R. (2003). Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204–14.CrossRefGoogle Scholar
Wilhite, D. A. and Glantz, M. H. (1987). Understanding the drought phenomenon: the role of definitions. In Planning for Drought: Toward a Reduction of Societal Vulnerability, ed. Wilhite, D. A., Easterling, W. E. and Wood, D. A.. Boulder, CO: Westview Press, pp. 11–27.Google Scholar
Willmott, C. J. (1996). Evaporation. In Encyclopedia of Climate and Weather, ed. Schneider, S. H.. New York, NY: Oxford University Press, Vol. 1, pp. 303–5.Google Scholar
Wilson, K. B., Baldocchi, D. D., Aubinet, M.et al. (2002) Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour. Res., 38, 1294, doi:10.1029/2001WR000989.CrossRefGoogle Scholar
Wilson, R. J. S., Luckman, B. H. and Esper, J. (2005). A 500 year dendroclimatic reconstruction of spring-summer precipitation from the lower Bavarian Forest region, Germany. Int. J. Climatol., 25, 611–30.CrossRefGoogle Scholar
Winter, T. C. (2000). The vulnerability of wetlands to climate change: a hydrologic landscape perspective. J. Amer. Water Resour. Assoc., 36, 305–11.CrossRefGoogle Scholar
Winter, T. C. and LaBaugh, J. W. (2003). Hydrologic considerations in defining isolated wetlands. Wetlands, 23, 532–40.CrossRefGoogle Scholar
Wohl, E. E. (2000). Inland flood hazards. In Inland Flood Hazards: Human, Riparian, and Aquatic Communities, ed. Wohl, E. E.. New York, NY: Cambridge University Press, pp. 3–36.CrossRefGoogle Scholar
Wolter, K. and Timlin, M. S. (1998). Measuring the strength of ENSO-how does 1997/98 rank?Weather, 53, 315–24.CrossRefGoogle Scholar
Wood, E. F. (1995). Heterogeneity and scaling land-atmospheric water and energy fluxes in climate systems. In Space and Time Scale Variability and Interdependencies in Hydrological Processes, ed. Feddes, R. A.. Cambridge: Cambridge University Press, pp. 3–19.CrossRefGoogle Scholar
Woodhouse, C. A. and Overpeck, J. T. (1998). 2000 years of drought variability in the central United States. Bull. Amer. Meteor. Soc., 79, 2693–714.2.0.CO;2>CrossRefGoogle Scholar
Woodhouse, C. A., Gray, S. T. and Meko, D. M. (2006). Updated streamflow reconstructions for the Upper Colorado River basin. Water Resour. Res., 42, W05415, doi:10.1029/2005WR004455.CrossRefGoogle Scholar
Woodhouse, C. A., Lukas, J. J. and Brown, P. M. (2002). Drought in the western Great Plains, 1845–56: impacts and implications. Bull. Amer. Meteor. Soc., 83, 1485–93.CrossRefGoogle Scholar
Woodside, C. A. (2001). A tree-ring reconstruction of streamflow for the Colorado Front Range. J. Amer. Water Resour. Assoc., 37, 561–9.Google Scholar
,World Meteorological Organization (WMO) (1986a). Intercomparison of Models of Snowmelt Runoff. Operational Hydrology Report 23. WMO-No. 646. Geneva: World Meteorological Organization.Google Scholar
,World Meteorological Organization (WMO) (1986b). Manual for Estimation of Probable Maximum Precipitation. Operational Hydrology Report 1. WMO-No. 332, 2nd edn. Geneva: World Meteorological Organization.
,World Meteorological Organization (WMO) (1996). Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8, 6th edn. Geneva: World Meteorological Organization.
Wulfmeyer, V. and Henning-Müller, I. (2006). The climate station of the University of Hohenheim: analyses of air temperature and precipitation time series since 1878. Int. J. Climatol., 26, 113–38.CrossRefGoogle Scholar
Xie, P. and Arkin, P. A. (1997). Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–58.2.0.CO;2>CrossRefGoogle Scholar
Xie, P. and Arkin, P. A. (1998). Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Climate, 11, 137–63.2.0.CO;2>CrossRefGoogle Scholar
Xie, P., Janowiak, J. E., Arkin, P. A.et al. (2003). GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 2197–214.CrossRefGoogle Scholar
Yamaguchi, Y. and Shinoda, M. (2002). Soil moisture modeling based on multiyear observations in the Sahel. J. Appl. Meteor., 41, 1140–6.2.0.CO;2>CrossRefGoogle Scholar
Yang, F., Kumar, A., Schlesinger, M. E. and Wang, W. (2003). Intensity of hydrological cycles in warmer climates. J. Climate, 16, 2419–23.CrossRefGoogle Scholar
Yuter, S. E. (2003). Radar: precipitation radar. In Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Curry, J. A. and Pyle, J. A.. London: Academic Press, pp. 1833–51.CrossRefGoogle Scholar
Zaitchik, B. F., Macalady, A. K., Bonneau, L. R. and Smith, R. B. (2006). Europe's 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int. J. Climatol., 26, 743–69.CrossRefGoogle Scholar
Zeng, N. (2003). Drought in the Sahel. Science, 302, 999–1000.CrossRefGoogle ScholarPubMed
Zhang, C. and Dong, M. (2004). Seasonality in the Madden-Julian oscillation. J. Climate, 17, 3169–80.2.0.CO;2>CrossRefGoogle Scholar
Zhang, Y. J., Wallace, M. and Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 1004–20.2.0.CO;2>CrossRefGoogle Scholar
Zierl, B. and Lischke, H. (2002). Trends in drought in Swiss forested ecosystems. In Climatic Change: Implications for the Hydrological Cycle and for Water Management, ed. Beniston, M.. Dordrecht: Kluwer Academic Publishers, pp. 329–47.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Marlyn L. Shelton, University of California, Davis
  • Book: Hydroclimatology
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754746.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Marlyn L. Shelton, University of California, Davis
  • Book: Hydroclimatology
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754746.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Marlyn L. Shelton, University of California, Davis
  • Book: Hydroclimatology
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754746.012
Available formats
×