Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T03:18:56.198Z Has data issue: false hasContentIssue false

13 - Digital↔analog conversion

Published online by Cambridge University Press:  06 July 2010

Daniel M. Kaplan
Affiliation:
Illinois Institute of Technology
Christopher G. White
Affiliation:
Illinois Institute of Technology
Get access

Summary

In this chapter we will study simple techniques for generating and reading voltage or current levels, i.e., converting between analog (voltage or current) and digital (binary-number) information. The availability of high speed, easy-to-use, inexpensive digital⇒analog and analog⇒digital converter chips has dramatically changed the way audio and video information are recorded and processed, as well as how computers are used in laboratory research and process control. The process of converting digital information into voltages or currents whose magnitudes are proportional to the digitally encoded numbers is called digital-to-analog (D/A) conversion. The reverse process is called analog-to-digital (A/D) conversion. The devices that carry out these conversions are called DACs and ADCs, respectively.

In this chapter, after building a simple DAC from a digital counter and an op amp, you will continue your exploration of analog/digital conversion by building a 4-bit tracking ADC. Having learned the basic operating principles, you'll use an ADC080x 8-bit successive-approximation A/D chip to digitize (i.e., convert to digital) an arbitrary AC signal. The original signal will then be re-created from the digitized data using a DAC080x D/A chip. This exercise will also allow you to explore the limitations of ADC and DAC operations.

Please be sure to work through these circuits in advance, otherwise it is highly unlikely that you will successfully complete the exercises in a timely fashion! Carefully study the manufacturer's data sheets which provide extensive details on operation and performance. As always, complete schematic diagrams significantly improve debugging efficiency.

Type
Chapter
Information
Hands-On Electronics
A Practical Introduction to Analog and Digital Circuits
, pp. 167 - 182
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×