Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T15:05:19.594Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

7 - Speech synthesis using fractals

Marwan Al-Akaidi
Affiliation:
De Montfort University, Leicester
Get access

Summary

Computing fractal noise

Developing mathematical models to simulate and analyse noise has an important role in digital signal and image processing. Computer generated noise is routinely used to test the robustness of different types of algorithm; it is used for data encryption and even to enhance or amplify signals through ‘stochastic resonance’. Accurate statistical models for noise (e.g. the probability density function or the characteristic function) are particularly important in image restoration using Bayesian estimation [1], maximum-entropy methods for signal and image reconstruction [2] and in the image segmentation of coherent images in which ‘speckle’ (arguably a special type of noise, i.e. coherent Gaussian noise) is a prominent feature [3]. The noise characteristics of a given imaging system often dictate the type of filters that are used to process and analyse the data. Noise simulation is also important in the synthesis of images used in computer graphics and computer animation systems, in which fractal noise has a special place (e.g. [4, 5]).

The application of fractal geometry for modelling naturally occurring signals and images is well known. This is due to the fact that the ‘statistics’ and spectral characteristics of random scaling fractals are consistent with many objects found in nature, a characteristic that is expressed in the term ‘statistical self-affinity’. This term refers to random processes whose statistics are scale invariant. An RSF signal is one whose PDF remains the same irrespective of the scale over which the signal is sampled.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×