Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-15T20:24:12.757Z Has data issue: false hasContentIssue false

19 - Galois representations and differential modules

Published online by Cambridge University Press:  05 August 2012

Kiran S. Kedlaya
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

In this chapter we construct a class of examples of differential modules on open annuli which carry Frobenius structures and hence are solvable at a boundary. These modules are derived from continuous linear representations of the absolute Galois group of a positive-characteristic local field.

We first construct a correspondence between Galois representations and differential modules over ℇ carrying a unit-root Frobenius structure. The basic mechanism for producing these modules is to tensor with a large ring carrying a Galois action and then take Galois invariants. This mechanism will reappear when we turn to p-adic Hodge theory, at which point we will attempt to simulate this situation using the Galois group of a mixed-characteristic local field. See Chapter 24.

Then we refine the construction to compare Galois representations having finite image of inertia with differential modules over ℇ± carrying a unit-root Frobenius structure; the main result here is an equivalence of categories due to Tsuzuki. It is generalized by the absolute case of the p-adic local monodromy theorem (Theorem 20.1.4 below) and indeed can be used together with the slope filtration theorem (Theorem 17.4.3) to prove the monodromy theorem in the absolute case. This result also has an analogue in p-adic Hodge theory; see Theorem 24.2.5.

We finally describe (without proof) a numerical relationship between the wild ramification of a Galois representation and the convergence of solutions of p-adic differential equations. Besides making explicit the analogy between the wild ramification of Galois representations and the irregularity of meromorphic differential systems, it also suggests an approach to higherdimensional ramification theory.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×