Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T16:10:16.004Z Has data issue: false hasContentIssue false

6 - Supercontinuum generation and nonlinearity in soft glass fibres

Published online by Cambridge University Press:  06 July 2010

J. M. Dudley
Affiliation:
Université de Franche-Comté
J. R. Taylor
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

There are many applications for broad bandwidth infrared laser sources, including optical frequency metrology (Udem et al., 2002), precision spectroscopy (Holzwarth et al., 2000) and optical tomography (Hartl et al., 2001), and moving into the mid-infrared (mid-IR), uses for wavelengths beyond 2 μm include LIDAR, molecular spectroscopy and active hyperspectral imaging. Fibre-based supercontinuum sources are attractive for these applications due to their combination of high brightness and broad bandwidth in comparison to alternative thermal or laser sources. Current high brightness mid-IR sources are typically based on optical parametric oscillators (OPO) or quantum cascade lasers (QCL). While OPOs achieve excellent performance they require large pump lasers and can be rather complex and costly to maintain, and QCLs are hard to scale up in power and cannot at present be used to access the important 2–3 μm regime. New fibre-based technology could create an important additional source of robust and lower cost broad bandwidth mid-IR light for the future.

Beyond a wavelength of 2 μm, due to the onset of losses in silica, it is necessary to consider the use of non-silica glasses. The fundamental material properties of these glasses can enhance supercontinuum generation across the mid-IR since these glasses can have intrinsic nonlinearities ∼ 10 × to 100 × that of silica. However, the zero-dispersion wavelengths of these materials are generally longer than for silica, implying the need for longer wavelength pump lasers.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×