Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-02T04:28:18.231Z Has data issue: false hasContentIssue false

Chapter Seventeen - Species functional traits, trophic control and the ecosystem consequences of adaptive foraging in the middle of food chains

Published online by Cambridge University Press:  05 February 2013

Geoffrey C. Trussell
Affiliation:
Marine Science Center and Department of Biology, Northeastern University
Oswald J. Schmitz
Affiliation:
School of Forestry and Environmental Studies, Yale University
Takayuki Ohgushi
Affiliation:
Kyoto University, Japan
Oswald Schmitz
Affiliation:
Yale University, Connecticut
Robert D. Holt
Affiliation:
University of Florida
Get access

Summary

Introduction

An ecosystem is often defined simply as a community of organisms interacting with each other and their biophysical environment. This definition arose from early conceptions of how the natural world is organized and is elegant in its simplicity because it captures the basic elements of a functioning system (Tansley 1935; Leopold 1939; Lindeman 1942). But those trying to develop a synthetic, empirical understanding of how ecosystems function and how they will respond to environmental change are abundantly aware that there is much inherent complexity implied by this seemingly simple definition. To cope with this complexity, ecologists have traditionally abstracted one part of the definition and elaborated the other. For example, ecosystem ecologists have long assumed that interacting organisms can be simply assigned to different compartments (e.g., producer, primary and secondary consumer, decomposer) and focused on environmental and biophysical aspects that dictate the transformation and flow of materials and energy among various compartments (Lindeman 1942; Odum 1969; Likens et al. 1970). In contrast, community ecologists have downplayed the biophysical aspects of materials and energy transfer and focused on organismal populations (Shelford 1913; Elton 1927; Hutchinson 1957; Paine 1966; MacArthur 1972), their diversity and the myriad interactions (e.g., predation, competition, facilitation) that determine their distribution and abundance (Reiners 1986; DeAngelis 1992).

Modern efforts to integrate organismal and abiotic factors into the study of ecosystems arguably were inspired by Hairston, Slobodkin and Smith’s (HSS) classic paper (Hairston et al. 1960), which sought to merge Lindeman’s trophic dynamic perspective (Lindeman 1942) and MacArthur’s population ecology perspective (MacArthur 1958) to explain why, in the face of putatively abundant herbivores, the world is still largely green rather than denuded by herbivory. HSS made the simple argument that the world is green because predators limit the impact of herbivores on plants. This paper highlighted the ecological significance of indirect effects by viewing the biological component of ecosystems as being comprised of linear food chains where interacting species (who eats whom) determine the flow of materials and energy through the ecosystem (Paine 1988; Cohen et al. 1990).

Type
Chapter
Information
Trait-Mediated Indirect Interactions
Ecological and Evolutionary Perspectives
, pp. 324 - 338
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A. 1984 Foraging time optimization and interactions in food websAmerican Naturalist 124 80CrossRefGoogle Scholar
Allen, A. P.Brown, J. H.Gillooly, J. F. 2002 Global biodiversity, biochemical kinetics, and the energetic-equivalence ruleScience2971545CrossRefGoogle ScholarPubMed
Allen, A. P.Gillooly, J. F.Brown, J. H. 2005 Linking the global carbon cycle to individual metabolismFunctional Ecology 19 202CrossRefGoogle Scholar
Anderson, K. J.Allen, A. P.Gillooly, J. F.Brown, J. H. 2006 Temperature-dependence of biomass accumulation rates during secondary successionEcology Letters 9 673CrossRefGoogle ScholarPubMed
Aquilino, K. M.Cardinale, B. J.Ives, A. R. 2005 Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic systemOikos 108 275CrossRefGoogle Scholar
Azam, F.Fenchel, T.Field, J. G.Gray, J. S.Meyer-Reil, L. A.Thingstad, F. 1983 The ecological role of water-column microbes in the seaMarine Ecology Progress Series 10 257CrossRefGoogle Scholar
Beckerman, A. P.Petchey, O. L.Warren, P. H. 2006 Foraging biology predicts food web complexityProceedings of the National Academy of Sciences of the United States of America 103 13745CrossRefGoogle ScholarPubMed
Beckerman, A. P.Uriarte, M.Schmitz, O. J. 1997 Experimental evidence for a behavior-mediated trophic cascade in a terrestrial food chainProceedings of the National Academy of Sciences of the United States of America 94 10735CrossRefGoogle Scholar
Bengtsson, J.Setälä, H.Zheng, W. D. 1996 Food webs and nutrient cycling in soils: interactions and positive feedbacksPolis, G.Winemiller, K.Food Webs: Integration of Patterns and DynamicsLondonChapman and Hall30CrossRefGoogle Scholar
Bernays, E. A. 1998 Evolution of feeding behavior in insect herbivoresBioScience 48 35CrossRefGoogle Scholar
Bernot, R. J.Turner, A. M. 2001 Predator identity and trait-mediated indirect effects in a littoral food webOecologia 129 139CrossRefGoogle Scholar
Boonstra, R.Krebs, C. J.Chr. Stenseth, N. 1998 Population cycles in small mammals: the problem of explaining the low phaseEcology 79 1479CrossRefGoogle Scholar
Briand, F.Cohen, J. E. 1987 Environmental correlates of food chain lengthScience 238 956CrossRefGoogle ScholarPubMed
Brown, J. H.Gillooly, J. F.Allen, A. P.Savage, V. M.West, G. B. 2004 Toward a metabolic theory of ecologyEcology 85 1771CrossRefGoogle Scholar
Brown, J. S.Kotler, B. P. 2004 Hazardous duty pay and the foraging cost of predationEcology Letters 7 999CrossRefGoogle Scholar
Brown, J. S.Laundre, J. W.Gurung, M. 1999 The ecology of fear: optimal foraging, game theory and trophic interactionsJournal of Mammalogy 80 385CrossRefGoogle Scholar
Carpenter, S. R.Kitchell, J. F. 1993 The Trophic Cascade in LakesCambridgeCambridge University PressCrossRefGoogle Scholar
Cohen, J. E.Briand, F.Newman, C. M. 1990 Community Food Webs: Data and TheoryNew YorkSpringer VerlagCrossRefGoogle Scholar
Creel, S.Christianson, D. 2008 Relationship between direct predation and risk effectsTrends in Ecology and Evolution 23 194CrossRefGoogle Scholar
Creel, S.Christianson, D.Liley, S.WinnieJr., J. A. 2007 Predation risk affects reproductive physiology and demography of elkScience 315 960CrossRefGoogle ScholarPubMed
Creel, S.WinnieJr.,   J. A.Christianson, D. 2009 Glucocorticoid stress hormones and the effect of predation risk on elk productionProceedings of the National Academy of Sciences of the United States of America 106 12388CrossRefGoogle Scholar
Creel, S.Winnie, J.Maxwell, B.Hamlin, K.Creel, M. 2005 Elk alter habitat selection as an antipredator response to wolvesEcology 86 3387CrossRefGoogle Scholar
Dahlgren, J.Oksanen, L.Oksanen, T. 2009 Plant defenses to no avail? Responses of plants with varying edibility to food web manipulations in a low arctic scrublandEvolutionary Ecology Research 11 1189Google Scholar
DeAngelis, D. L. 1992 Dynamics of Nutrient Cycling and Food WebsNew YorkChapman and HallCrossRefGoogle Scholar
DeAngelis, D. L.Bartell, S. M.Brenkert, A. L. 1989 Effects of nutrient recycling and food chain length on resilienceAmerican Naturalist 134 778CrossRefGoogle Scholar
Denno, R. F.Finke, D. L.Langellotto, G. A. 2005 Direct and indirect effects of vegetation structure and habitat complexity on predator–prey and predator-predator interactionsBarbosa, P.Castellanos, I.Ecology of Predator–Prey InteractionsOxfordOxford University Press211Google Scholar
Ehrlich, P. R.Birch, L. C. 1967 Balance of nature and population controlAmerican Naturalist 101 97CrossRefGoogle Scholar
Elser, J. J.Sterner, R. W.Gorokhova, E. 2000 Biological stoichiometry from genes to ecosystemsEcology Letters 3 540CrossRefGoogle Scholar
Elton, C. S. 1927 Animal EcologyNew YorkMacmillan PublishingGoogle Scholar
Fagan, W. F.Siemann, E.Mitter, C. 2002 Nitrogen in insects: implications for trophic complexity and species diversificationAmerican Naturalist 160 784CrossRefGoogle ScholarPubMed
Finke, D. L.Denno, R. F. 2005 Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascadesEcology Letters 8 1299CrossRefGoogle Scholar
Fortin, D.Beyer, H. L.Boyce, M. S. 2005 Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National ParkEcology 86 1320CrossRefGoogle Scholar
Fenchel, T. 1988 Marine plankton food chainsAnnual Review of Ecology and Systematics 19 19CrossRefGoogle Scholar
Frost, P. C.Benstead, J. P.Cross, W. F. 2006 Threshold elemental ratios of carbon and phosphorus in aquatic consumersEcology Letters 9 774CrossRefGoogle ScholarPubMed
HairstonJr., N. G.HairstonSr.,  N. G. 1993 Cause-effect relationships in energy flow, trophic structure, and interspecific interactionsAmerican Naturalist 142 379CrossRefGoogle Scholar
Hairston, N. G.Smith, F. E.Slobodkin, L. B. 1960 Community structure, population control and competitionAmerican Naturalist 94 421CrossRefGoogle Scholar
Hall, S. J.Raffaelli, D. G. 1993 Food webs: theory and realityAdvances in Ecological Research 24 187CrossRefGoogle Scholar
Hättenschweiler, S.Tiunov, A. V.Scheu, S. 2005 Biodiversity and litter decomposition in terrestrial ecosystemsAnnual Review of Ecology, Evolution, and Systematics 36 191CrossRefGoogle Scholar
Hawkins, B. A. 1988 Species diversity in the third and fourth trophic levels: patterns and mechanismsJournal of Animal Ecology 57 137CrossRefGoogle Scholar
Hawlena, D.Schmitz, O. J. 2010 Herbivore physiological response to fear of predation and implications for ecosystem nutrient dynamicsProceedings of the National Academy of Sciences of the United States of America 107 15503CrossRefGoogle Scholar
Hawlena, D.Schmitz, O. J. 2010 Physiological stress as a fundamental mechanism linking predation to ecosystem processesAmerican Naturalist 176 537CrossRefGoogle Scholar
Hooper, D. U.Chapin, F. S.Ewel, J. J. 2005 Effects of biodiversity on ecosystem functioning: a consensus of current knowledgeEcological Monographs 75 3CrossRefGoogle Scholar
Hutchinson, G. E. 1957 Concluding remarks. Population studies: animal ecology and demographyCold Spring Harbor Symposium on Quantitative Biology 22 415CrossRefGoogle Scholar
Hutchinson, G. E. 1959 Homage to Santa Rosalia or why are there so many kinds of animals?American Naturalist 93 145CrossRefGoogle Scholar
Jenkins, B.Kitching, R. L.Pimm, S. L. 1992 Productivity, disturbance, and food web structure at a local spatial scale in experimental container habitatsOikos 65 249CrossRefGoogle Scholar
Kagawa, N.Mugiya, Y. 2002 Brain Hsp70 mRNA expression is linked with plasma cortisol levels in goldfish () exposed to a potential predatorZoological Science 19 735CrossRefGoogle ScholarPubMed
Kaunzinger, C. M. K.Morin, P. J. 1998 Productivity controls food-chain properties in microbial communitiesNature 395 495CrossRefGoogle Scholar
Laska, M. S.Wootton, J. T. 1998 Theoretical concepts and empirical approaches to measuring interaction strengthEcology 79 461CrossRefGoogle Scholar
Lawton, J. H.McNeill, S. 1979 Between the devil and the deep blue sea: on the problem of being a herbivoreAnderson, R. M.Turner, B. D.Taylor, L. R.Population DynamicsOxfordBlackwell Publishing223Google Scholar
Leopold, A. 1939 A biotic view of the landJournal of Forestry 37 727Google Scholar
Likens, G. E.Borman, F. H.Johnson, N. M.Fisher, D. W.Pierce, R. S. 1970 Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystemEcological Monographs 40 23CrossRefGoogle Scholar
Lima, S. L. 1998 Nonlethal effects in the ecology of predator–prey interactions: what are the ecological effects of anti-predator decision- making?BioScience 48 25CrossRefGoogle Scholar
Lindeman, R. L. 1942 The trophic-dynamic aspect of ecologyEcology 22 399CrossRefGoogle Scholar
MacArthur, R. H. 1958 Population ecology of some warblers of northeastern coniferous forestsEcology 39 599CrossRefGoogle Scholar
MacArthur, R. H. 1972 Geographical EcologyPrinceton, NJPrinceton University PressGoogle Scholar
Martinez, N. D. 1995 Unifying ecological subdisciplines with ecosystem food websJones, C.Lawton, J.Linking Species and EcosystemNew YorkChapman Hall166CrossRefGoogle Scholar
Martinson, H. M.Schneider, K.Gilbert, J. 2008 Detritivory: stoichiometry of a neglected trophic levelEcological Research 23 487CrossRefGoogle Scholar
Mattson, W. J. 1980 Herbivory in relation to plant nitrogen contentAnnual Review of Ecology and Systematics 11 119CrossRefGoogle Scholar
May, R. M. 1983 The structure of food websNature 301 566CrossRefGoogle Scholar
McGill, B. J.Enquist, B. J.Weiher, E.Westoby, M. 2006 Rebuilding community ecology from functional traitsTrends in Ecology and Evolution 21 178CrossRefGoogle ScholarPubMed
McPeek, M. A. 2004 The growth/predation risk trade-off: so what is the mechanismAmerican Naturalist 163 E88CrossRefGoogle ScholarPubMed
McPeek, M. A.Grace, M.Richardson, J. M. L. 2001 Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselfliesEcology 82 1535CrossRefGoogle Scholar
Meyer, G. B.Root, R. B. 1993 Effects of herbivorous insects and soil fertility on reproduction of goldenrodEcology 74 1117CrossRefGoogle Scholar
Moore, J. C.Berlow, E. L.Coleman, D. C. 2004 Detritus, trophic dynamics and biodiversityEcology Letters 7 584CrossRefGoogle Scholar
Murdoch, W. W. 1966 Community structure, population control and competition: a critiqueAmerican Naturalist 100 219CrossRefGoogle Scholar
Odum, E. P. 1969 The strategy of ecosystem developmentScience 164 262CrossRefGoogle ScholarPubMed
Paine, R. T. 1966 Food web complexity and species diversityAmerican Naturalist 100 65CrossRefGoogle Scholar
Paine, R. T. 1988 Food webs: road maps of interactions or grist for theoretical developmentEcology 69 1648CrossRefGoogle Scholar
Paine, R. T. 1992 Food-web analysis through field measurements of per capita interaction strengthNature 355 73CrossRefGoogle Scholar
Pauwels, K.Stoks, R.DeMeester, L. 2005 Coping with predator-induced stress: interclonal differences in induction of heat-shock proteins in the water flea Journal of Evolutionary Biology 18 867CrossRefGoogle Scholar
Peacor, S. D.Werner, E. E. 2001 The contribution of trait-mediated indirect effects to the net effects of a predatorProceedings of the National Academy of Sciences of the United States of America 98 3904CrossRefGoogle ScholarPubMed
Pearson, D. E. 2009 Invasive plant architecture alters trophic interactions by changing predator abundance and behaviorOecologia 159 549CrossRefGoogle ScholarPubMed
Peckarsky, B. L.McIntosh, A. R. 1998 Fitness and community consequences of avoiding multiple predatorsOecologia 113 565CrossRefGoogle ScholarPubMed
Peckarsky, B. L.Abrams, P. A.Bolnick, D. I. 2008 Revisiting the classics: considering nonconsumptive effects in textbook examples of predator–prey interactionsEcology 89 2416CrossRefGoogle ScholarPubMed
Pimm, S. L. 1982 Food WebsLondonChapman and HallCrossRefGoogle Scholar
Pimm, S. L.Lawton, J. H. 1977 Number of trophic levels in ecological communitiesNature 268 329CrossRefGoogle Scholar
Post, D. M. 2002 The long and short of food-chain lengthTrends in Ecology and Evolution 17 269CrossRefGoogle Scholar
Reiners, W. A. 1986 Complementary models for ecosystemsAmerican Naturalist 127 59CrossRefGoogle Scholar
Ripple, W. J.Beschta, R. L. 2004 Wolves and the ecology of fear: can predation risk structure ecosystems?BioScience 54 755CrossRefGoogle Scholar
Rovero, F.Hughes, R. N.Chelazzi, G. 1999 Cardiac and behavioural responses of mussels to risk of predation by dogwhelksAnimal Behaviour 58 707CrossRefGoogle ScholarPubMed
Ryther, J. H. 1969 Photosynthesis and fish production in the seaScience 166 72CrossRefGoogle Scholar
Savage, V. M.Gillooly, J. F.Brown, J. H.West, G. B.Charnov, E. L. 2004 Effects of body size and temperature on population growthAmerican Naturalist 163 429CrossRefGoogle ScholarPubMed
Scheu, S. 2001 Plants and generalist predators as links between the below-ground and above-ground systemBasic and Applied Ecology 2 3CrossRefGoogle Scholar
Schmitz, O. J. 2008 Herbivory from individuals to ecosystemsAnnual Review of Ecology, Evolution, and Systematics 39 133CrossRefGoogle Scholar
Schmitz, O. J. 2010 Resolving Ecosystem ComplexityPrinceton, NJPrinceton University PressGoogle Scholar
Schmitz, O. J.Suttle, K. B. 2001 Effects of top predator species on direct and indirect interactions in a food webEcology 82 2072CrossRefGoogle Scholar
Schmitz, O. J.Grabowski, J. H.Peckarsky, B. L. 2008 From individuals to ecosystem function: toward an integration of evolutionary and ecosystem ecologyEcology 89 2436CrossRefGoogle ScholarPubMed
Schmitz, O. J.Ovadia, O.Krivan, V. 2004 Trophic cascades: the primacy of trait-mediated indirect interactionsEcology Letters 7 153CrossRefGoogle Scholar
Schoener, T. W. 1989 Food webs from the small to the largeEcology 70 1559CrossRefGoogle Scholar
Schoonhoven, L. M.van Loon, J. J. A.Dicke, M. 2005 Insect–Plant BiologyOxfordOxford University PressGoogle Scholar
Shelford, V. E. 1913 Animal Communities in Temperate AmericaChicago, ILUniversity of Chicago PressCrossRefGoogle Scholar
Singer, M. S.Carrière, Y.Theuring, C.Hartmann, T. 2004 Disentangling food quality from resistance against parasitoids: diet choice by a generalist caterpillarAmerican Naturalist 164 423CrossRefGoogle ScholarPubMed
Slobodkin, L. B. 1960 Ecological energy relationships at the population levelAmerican Naturalist 94 213CrossRefGoogle Scholar
Slos, S.Stoks, R. 2008 Predation risk induces stress proteins and reduces antioxidant defenseFunctional Ecology 22 637CrossRefGoogle Scholar
Sterner, R. W. 1997 Modelling interactions of food quality and quantity in homeostatic consumersFreshwater Biology 38 473CrossRefGoogle Scholar
Sterner, R. W.Elser, J. J. 2002 Ecological Stoichiometry: The Biology of Elements from Molecules to the BiospherePrinceton, NJPrinceton University PressGoogle Scholar
Stoks, R.De Block, M.McPeek, M. A. 2005 Alternative growth and energy storage responses to mortality threats in damselfliesEcology Letters 8 1307CrossRefGoogle Scholar
Straub, C. S.Snyder, W. E. 2006 Species identity dominates the relationship between predator biodiversity and herbivore suppressionEcology 87 277CrossRefGoogle ScholarPubMed
Tansley, A. G. 1935 The use and abuse of vegetational concepts and termsEcology 16 284CrossRefGoogle Scholar
Trussell, G. C.Ewanchuk, P. J.Bertness, M. D. 2003 Trait-mediated interactions in rocky intertidal food chains: predator risk cues alter prey feeding ratesEcology 84 629CrossRefGoogle Scholar
Trussell, G. C.Ewanchuk, P. J.Matassa, C. M. 2006 Habitat effects on the relative importance of trait- and density-mediated indirect interactionsEcology Letters 9 1245CrossRefGoogle ScholarPubMed
Trussell, G. C.Ewanchuk, P. J.Matassa, C. M. 2006 The fear of being eaten reduces energy transfer in a simple food chainEcology 87 2979CrossRefGoogle Scholar
Trussell, G. C.Ewanchuk, P. J.Matassa, C. M. 2008 Resource identity modifies the influence of predation risk on ecosystem functionEcology 89 2798CrossRefGoogle ScholarPubMed
Violle, C.Navas, M-L.Vile, D. 2007 Let the concept of trait be functional!Oikos 116 882CrossRefGoogle Scholar
Wardle, D. A. 2002 Communities and Ecosystems: Linking the Aboveground and Belowground ComponentsPrinceton, NJPrinceton University PressGoogle Scholar
Werner, E. E.Peacor, S. D. 2003 A review of trait-mediated indirect interactions in ecological communitiesEcology 84 1083CrossRefGoogle Scholar
White, T. C. R. 1978 The importance of a relative shortage of food in animal ecologyOecologia 33 71CrossRefGoogle ScholarPubMed
Williams, R. J.Martinez, N. D. 2000 Simple rules yield complex food websNature 404 180CrossRefGoogle ScholarPubMed
Wise, D. H.Snyder, W. E.Tuntibunpakul, P.Halaj, J. 1999 Spiders in decomposition food webs of agroecosystems: theory and evidenceJournal of Arachnology 27 363Google Scholar
Wootton, J. T.Emmerson, M. 2005 Measurement of interaction strength in natureAnnual Review of Ecology, Evolution, and Systematics 36 419CrossRefGoogle Scholar
Yodzis, P. 1984 Energy flow and the vertical structure of real ecosystemsOecologia 65 86CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×