Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-23T02:26:26.188Z Has data issue: false hasContentIssue false

26 - Higher Dimensions

Published online by Cambridge University Press:  07 September 2010

Erik D. Demaine
Affiliation:
Massachusetts Institute of Technology
Joseph O'Rourke
Affiliation:
Smith College, Massachusetts
Get access

Summary

Higher dimensions are just beginning to be explored. Here we touch on extensions to higher dimensions in all three parts of the book.

PART I

1D (one-dimensional) linkages in higher dimensions have been explored for certain problems. For example, many linkage results that permit crossings generalize to higher dimensions, such as the annulus reachability Lemma 5.1.1 (p. 59) and the results on turning a polygon inside-out (Section 5.1.2, p. 63). Many of the generalizations are straightforward, employing nearly identical proofs. Disallowing crossings can lead to fundamentally different situations, however, as we saw with the lack of locked4Dchains and trees (Section 6.4, p. 92).

What remains largely unexplored here are 2D “linkages” in 4D–and higher-dimensional analogs. One model is 2D polygons hinged together at their edges, which have fewer degrees of freedom than 1D linkages in 3D. For example, hinged polygons can be forced to fold like a planar linkage by extruding the linkage orthogonal to the plane (see Figure 26.1). As we have just seen, Biedl et al. (2005) showed that even hinged chains of rectangles do not have connected configuration spaces, with their orthogonal version of the knitting needles (Figure 25.63). It would be interesting to explore these chains of rectangles in 4D. Another connection is to Frederickson's hinged piano dissections (p. 423), which are also just beginning to be explored.

Type
Chapter
Information
Geometric Folding Algorithms
Linkages, Origami, Polyhedra
, pp. 437 - 442
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Higher Dimensions
  • Erik D. Demaine, Massachusetts Institute of Technology, Joseph O'Rourke, Smith College, Massachusetts
  • Book: Geometric Folding Algorithms
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511735172.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Higher Dimensions
  • Erik D. Demaine, Massachusetts Institute of Technology, Joseph O'Rourke, Smith College, Massachusetts
  • Book: Geometric Folding Algorithms
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511735172.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Higher Dimensions
  • Erik D. Demaine, Massachusetts Institute of Technology, Joseph O'Rourke, Smith College, Massachusetts
  • Book: Geometric Folding Algorithms
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511735172.028
Available formats
×