Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T09:45:10.036Z Has data issue: false hasContentIssue false

2 - Recent advances in chlorophyll and bacteriochlorophyll biosynthesis

Published online by Cambridge University Press:  05 March 2012

Suzanne Roy
Affiliation:
Université du Québec à Rimouski, Canada
Carole A. Llewellyn
Affiliation:
Plymouth Marine Laboratory
Einar Skarstad Egeland
Affiliation:
University of Nordland, Norway
Geir Johnsen
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

Introduction

In 1997, the first edition of Phytoplankton Pigments in Oceanography was published (Jeffrey et al., 1997) in which a chapter was presented by Porra et al. (1997) on photosynthetic pigments, namely, chlorophylls (Chls), phycobilins and carotenoids. In this current volume, the phycobilins and carotenoids are discussed elsewhere (Chapters 9 and 3, this volume). The earlier presentation (Porra et al., 1997) only briefly described the Chl biosynthetic pathway while addressing the functions and locations of Chls in protein complexes of both the light-harvesting antenna complexes and reaction centres of the two photosystems present in the chloroplasts of higher plants and green algae. A comprehensive survey of Chl biodegradation was also described in the earlier presentation (Porra et al., 1997) but more recent information is now available (Kräutler and Hörtensteiner, 2006). In this current chapter, a more comprehensive account of the Chl biosynthetic pathway is presented together with the structures of many of the naturally occurring Chls, with a special focus on recently discovered Chls and their possible syntheses.

Structures of chlorophylls

The structures and properties of naturally occurring Chls have been extensively reviewed (Scheer, 1991, 2003, 2006). The Chls are mostly magnesium coordination complexes, but also rarely Zn-coordination complexes (see Sections 2.2.3 and 2.4.10.3), of cyclic tetrapyrroles which contain a fifth isocyclic (cyclopentanone) ring E constructed enzymically from the 13-propionate side chain of Mg-protoporphyrin IX (see Section 2.4.3): for the IUPAC-IUB tetrapyrrole atom numbering and ring labelling systems, see Figure 2.1B. All Chls possess a 131-oxo group and mostly, but not always, a 132 methylcarboxylate substituent while the 17-propionate side chain is usually, but not always, esterified with a long-chain isoprenoid alcohol such as phytol, farnesol or geranyl-geraniol.

Type
Chapter
Information
Phytoplankton Pigments
Characterization, Chemotaxonomy and Applications in Oceanography
, pp. 78 - 112
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhtar, M. 1991 Mechanism and stereochemistry of the enzymes involved in the conversion of uroporphyrinogen III to hemeBiosynthesis of TetrapyrrolesJordan, P. M.AmsterdamElsevier67CrossRefGoogle Scholar
Akhtar, M. 1994 The modification of acetate and propionate side chains during the biosynthesis of haem and chlorophylls: mechanistic and chemical studiesThe Biosynthesis of the Tetrapyrrole PigmentsChadwick, D. J.Ackrill, K.ChichesterWiley131Google Scholar
Akiyama, M.Miyashita, H.Kise, H.Watanabe, T.Miyachi, S.Kobayashi, M. 2001 Detection of chlorophyll ′ and pheophytin in a chlorophyll -dominating oxygenic photosynthetic prokaryote Anal. Sci 17 205CrossRefGoogle Scholar
Avissar, Y. J.Moberg, P. A. 1995 The common origins of the pigments of life: early steps of chlorophyll biosynthesisPhotosynth. Res 44 221CrossRefGoogle ScholarPubMed
Avissar, Y. J.Ormerod, J. G.Beale, S. I. 1989 Distribution of δ-aminolevulinic acid biosynthetic pathways among phototropic bacterial groupsArch. Microbiol 151 513CrossRefGoogle Scholar
Battersby, A. R. 1994 How nature builds the pigments of life: the conquest of vitamin B12Science 264 1551CrossRefGoogle ScholarPubMed
Battersby, A. R.Leeper, F. J. 1990 Biosynthesis of the pigments of life: mechanistic studies on the conversion of porphobilinogen to uroporphyrinogen IIIChem Rev 90 1261CrossRefGoogle Scholar
Baumgarten, D. 1970 The Structure of Bacteriochlorophyll bUniversity of CaliforniaBerkeleyCrossRefGoogle Scholar
Bazzaz, M. B. 1981 New chlorophyll chromophores isolated from a chlorophyll-deficient mutant of maizePhotobiochem. Photobiophys 2 199Google Scholar
Beale, S. I. 2006 Biosynthesis of 5-aminolevulinic acidChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer147CrossRefGoogle Scholar
Beale, S. I.Castelfranco, P. A.Granick, S. 1975 The biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamate in greening barleyProc. Natl. Acad. Sci. USA 72 2719CrossRefGoogle ScholarPubMed
Beale, S. I.Foley, T.Dzelzkalns, V. 1981 δ-aminolevulinic acid synthase from Proc. Natl. Acad. Sci. USA 78 1666CrossRefGoogle Scholar
Bible, K. C.Buytendorp, M.Zierath, P. D.Rinehart, K. L. 1988 Tunichlorin: A nickel chlorine isolated from the Caribbean tunicate Proc. Natl. Acad. Sci. USA 85 4582CrossRefGoogle Scholar
Bollivar, D. W. 2006 Recent advances in chlorophyll biosynthesisPhotosynth. Res 90 173CrossRefGoogle ScholarPubMed
Borrego, C. M.Arellano, J. B.Abella, C. A.Gilbro, T.Garcia-Gil, J. 1999 The molar extinction coefficient of bacteriochlorophyll and the pigment stoichiometry inChlorobium phaeobacteroides. Photosynth. Res 60 257CrossRefGoogle Scholar
Bröcker, M. J.Virus, S.Ganskow, S.Heathcote, PHeinz, D. W.Schubert, W.Jahn, D.Moser, J. 2008 ATP-driven reduction by dark operative protochlorophyllide oxidoreductase from mechanistically resembles nitrogenase catalysisJ. Biol. Chem 283 10559CrossRefGoogle ScholarPubMed
Bröcker, M. J.Wätzlich, D.Uliczka, F.Virus, S.Saggu, M.Lendzian, F.Scheer, H.Rüdiger, W.Moser, J.Jahn, D. 2008 Substrate recognition of nitrogenase-like dark operative protochlorophyllide oxidoreductase from J. Biol. Chem 283 29873CrossRefGoogle Scholar
Chadwick, D. H.Ackrill, K. 1994
Chisholm, S. W.Olson, R. J.Zettler, E. R.Goericke, R.Waterbury, J. BWelschmeyer, N. A. 1988 A novel free-living prochlorophyte abundant in the oceanic euphotic zoneNature 334 340CrossRefGoogle Scholar
Drechsler-Thielmann, B.Dörnemann, D.Senger, H. 1993 Synthesis of protoheme via both the C5 and the Shemin pathways in the pigment mutant C-2A’ ofScenedesmus obliquus. Z. Naturforsch. C 48 584Google Scholar
Ebbon, J. G.Tait, G. H. 1969 Studies on S-adenosyl-methionine-magnesium-protoporphyrin methyl-transferase in strain ZBiochem. J 111 573CrossRefGoogle Scholar
Ellsworth, R. K.Aronoff, S. 1968 Investigations on the biogenesis of chlorophyll . III. Biosynthesis of Mg-vinylporphine methylester from Mg-protoporphine IX monomethylester as observed in mutantsArch. Biochem. Biophys 125 269CrossRefGoogle Scholar
Ellsworth, R. K.Aronoff, S. 1969 Investigations on the biogenesis of chlorophyll . IV. Isolation and partial characterization of some biosynthetic intermediates between Mg-protoporphine IX monomethylester and Mg-vinylporphine methylester obtained from mutantsArch. Biochem. Biophys 130 374CrossRefGoogle Scholar
Ellsworth, R. K.Dullaghan, J. P.St. Pierre, M. E. 1974 The reaction mechanism of S-adenosyl-L-methionine: Mg-protoporphyrin IX methyltransferase of wheatPhotosynthetica 8 375Google Scholar
Frigaard, N.-U.Gomez Maqueo Chew, A.Maresca, J. A.Bryant, D. A. 2006 Bacteriochlorophyll biosynthesis in green bacteriaChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer201CrossRefGoogle Scholar
Fujita, Y. 1996 Protochlorophyllide reduction: a key step in the greening of plantsPlant Cell Physiol 34 411CrossRefGoogle Scholar
Fujita, Y.Takahashi, Y.Kohchi, T.Ozeki, H.Ohyama, K.Matsubara, H. 1989 Identification of a novel -like () protein in chloroplasts of the liverwort Plant Mol. Biol 13 551CrossRefGoogle ScholarPubMed
Fujita, Y.Takahashi, Y.Shonai, F.Ogura, Y.Matsubara, H. 1991 Cloning nucleotide sequences and differential expression of and () genes from the filamentous nitrogen-fixing cyanobacteriaPlectonema boryanum. Plant Cell Physiol 32 1093CrossRefGoogle Scholar
Garrido, J. L.Zapata, M. 2006 Chlorophyll analysis by new high performance liquid chromatography methodsChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer109CrossRefGoogle Scholar
Gibson, K. L.Laver, W. G.Neuberger, A. 1958 Initial stages in the biosynthesis of porphyrins. 2. The formation of δ-aminolaevulic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytesBiochem. J 70 71CrossRefGoogle ScholarPubMed
Gibson, K. L.Neuberger, A.Tait, G. H. 1963 Studies on the biosynthesis of porphyrin and bacteriochlorophyll by . 4. S-adenosylmethionine-magnesium-protoporphyrin methyltransferaseBiochem. J 88 325CrossRefGoogle ScholarPubMed
Goericke, R.Repeta, D. J. 1992 The pigments of : the presence of divinyl chlorophylls and in a marine prokaryoteLimnol. Oceanogr 37 425Google Scholar
Gough, S. P.Petersen, B. O.Duus, J. O. 2000 Anaerobic chlorophyll isocyclic ring formation in requires a cobalamin cofactorProc. Natl. Acad. Sci. USA 97 6908CrossRefGoogle ScholarPubMed
Granick, S. 1966 The induction of the synthesis of δ-aminolevulinic acid synthetase in chemical porphyria: a response to certain drugs, sex hormones and foreign chemicalsJ. Biol. Chem 241 1359Google ScholarPubMed
Grimm, B.Porra, R. J.Rüdiger, W.Scheer, H. 2006 Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsDordrechtSpringerCrossRefGoogle Scholar
Hartwich, G.Feodor, L.Simonin, I.Cmiel, E.Schäfer, W.Noy, D.Scherz, A.Scheer, H. 1998 Metal-substituted bacteriochlorophylls. 1. Preparation and influence of metal and coordination on spectraJ. Am. Chem. Soc 120 3675CrossRefGoogle Scholar
Hayaishi, O. 1974 General properties and biological functions of oxygenasesMolecular Mechanisms of Oxygen ActivationHayaishi, O.LondonAcademic Press1Google Scholar
Helfrich, M.King, G. C.Turner, A. G.Larkum, A. W. G. 1999 Identification of [8-vinyl]-protochlorophyllide in phototrophic prokaryotes and algae: chemical and spectroscopic propertiesBiochim. Biophys. Acta 1410 262CrossRefGoogle Scholar
Heyes, D. J.Hunter, C. N. 2005 Making light work of enzyme catalysis: protochlorophyllide oxidoreductaseTrends Biochem. Sci 30 642CrossRefGoogle ScholarPubMed
Heyes, D. J.Heathcote, P.Rigby, S. E. J.Palacios, M. A.van Grondelle, R.Hunter, C. N. 2006 The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complexJ. Biol. Chem 281 26847CrossRefGoogle Scholar
Heyes, D. J.Kruk, J.Hunter, C. N. 2006 Spectroscopic and kinetic characterization of the light-dependent enzyme protochlorophyllide oxidoreductase (POR) using monovinyl and divinyl substratesBiochem. J 394 243CrossRefGoogle ScholarPubMed
Hörtensteiner, S.Vincentini, F.Matile, P. 1995 Chlorophyll breakdown in senescent cotyledons of rape, L.: Enzymatic cleavage of phaeophorbide New Phytol 129 237CrossRefGoogle Scholar
Ito, H.Ohtsuka, T.Tanaka, A. 1996 Conversion of chlorophyll to chlorophyll via 7-hydroxymethyl chlorophyllJ. Biol. Chem 271 1475CrossRefGoogle ScholarPubMed
Iturraspe, J.Engel, N.Gossauer, A. 1994 Chlorophyll catabolism: Isolation and structure elucidation of chlorophyll catabolites inChlorella protothecoides. Phytochemistry 35 1387CrossRefGoogle Scholar
Jacobs, J. M.Jacobs, N. J. 1987 Oxidation of protoporphyrinogen to protoporphyrin: a step in chlorophyll and haem biosynthesisBiochem. J 244 219CrossRefGoogle ScholarPubMed
Jeffrey, S. W. 1969 Properties of two spectrally different components in chlorophyll preparationsBiochim. Biophys. Acta 177 456CrossRefGoogle Scholar
Jeffrey, S. W. 1972 Preparation and some properties of crystalline chlorophyll 1 and 2 from marine algaeBiochim. Biophys. Acta 279 15CrossRefGoogle ScholarPubMed
Jeffrey, S. W.Wright, S. W. 1987 A new spectrally distinct component in preparations of chlorophyll from the micro-alga (Prymesiophyceae)Biochim. Biophys. Acta 894 180CrossRefGoogle Scholar
Jeffrey, S. W.Anderson, J. M. 2000 (Haptophyta) holds promising insights for photosynthesisJ. Phycol 36 449CrossRefGoogle ScholarPubMed
Jeffrey, S. W.Mantoura, R. F. C.Wright, S. W. 1997 Phytoplankton Pigments in Oceanography: Guidelines to Modern MethodsParisUNESCO PublishingGoogle Scholar
Jordan, P. M. 1991 Biosynthesis of TetrapyrrolesAmsterdamElsevierGoogle Scholar
Jordan, P. M. 1991 The biosynthesis of 5-aminolaevulinic acid and its transformation into uroporphyrinogen IIIBiosynthesis of TetrapyrrolesJordan, P. M.AmsterdamElsevier1Google Scholar
Jordan, P.Fromme, P.Witt, H. T.Klukas, O.Saenger, W.Krauss, N. 2001 Three dimensionsal structure of cyanobacterial photosystem I at 2.5Å resolutionNature 411 909CrossRefGoogle Scholar
Kannangara, C. G.Gough, S. P.Bruyant, P.Hoober, J. K.Kahn, A.von Wettstein, D. 1988 tRNAGlu as a cofactor in δ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesisTrends in Biochem. Sci 13 139CrossRefGoogle ScholarPubMed
Kannangara, C. G.Andersen, R. V.Pontoppidan, B.Willows, R.von Wettstein, D. 1994 The Biosynthesis of the Tetrapyrrole PigmentsChadwick, D. J.Ackrill, K. 180 ChichesterWiley3Google Scholar
Kobayashi, M.Watanabe, T.Nakazato, M.Ikegame, I.Hiyama, T.Matsunaga, T. 1988 Chlorophyll /P680 stoichiometries in higher plants and cyanobacteria determined by HPLC analysisBiochim. Biophys. Acta 936 81CrossRefGoogle Scholar
Kobayashi, M.Van de Meent, E. J.Amesz, J.Ikigami, I.Watanabe, T. 1991 Bacteriochlorophyll epimer as a possible reaction center component of HeliobacteriaBiochim. Biophys. Acta 1057 89CrossRefGoogle Scholar
Kobayashi, M.Yamamura, M.Akiyama, M.Kise, H.Inoue, K.Hara, M.Wakao, N.Yahara, K.Watanabe, T. 1998 Acid resistance of Zn-Bacteriochlorophyll from an acidophilic bacterium Anal. Sci 14 1149CrossRefGoogle Scholar
Kobayashi, M.Akiyama, M.Kano, H.Kise, H. 2006 Spectroscopy and structure determinationChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer79CrossRefGoogle Scholar
Kobayashi, M.Akiyama, M.Kise, H.Watanabe, T. 2006 Unusual tetrapyrrole pigments of photosynthetic antennae and reaction centers: specially tailored chlorophyllsChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer55CrossRefGoogle Scholar
Kolossov, V. L.Rebeiz, C. A. 2003 Protochlorophyllide occurs in green but not in etiolated plantsJ. Biol. Chem 278 49675CrossRefGoogle ScholarPubMed
Kräutler, B.Hörtensteiner, S. 2006 Chlorophyll catabolites and the biochemistry of chlorophyll breakdownChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer223Google Scholar
Küpper, H.Küpper, F. C.Spiller, M. 2006 [Heavy metal]-chlorophylls formed during heavy metal stress and degradation products formed during digestion, extraction and storage of plant materialChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer67CrossRefGoogle Scholar
Lash, T. D. 1991 Action of uroporphyrinogen decarboxylase on uroporphyrinogen III: a reassessment of the clockwise decarboxylation hypothesisBiochem. J 278 901CrossRefGoogle ScholarPubMed
Lichtenthaler, H. K. 1987 Chlorophylls and carotenoids: pigments of photosynthetic membranesMethods Enzymol 148 350CrossRefGoogle Scholar
Liu, Z.Yan, H.Wang, K.Kuang, T.Zang, J.Gul, L.An, X.Chang, W. 2004 Crystal structure of spinach major light-harvesting complex at 2.72 Å resolutionNature 428 287CrossRefGoogle ScholarPubMed
Luo, J.Lim, C. K. 1994 Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylaseBiochem. J 289 529CrossRefGoogle Scholar
Minamizaki, K.Mizoguchi, T.Goto, T.Tamiaki, H.Fujita, Y. 2008 Identification of two homologous genes, and , that are differently involved in isocyclic ring formation of chlorophyll in the cyanobacterium sp. PCC6803J. Biol. Chem 283 2684CrossRefGoogle Scholar
Moss, G. P. 1988 IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN): Nomenclature of tetrapyrroles (Recommendations 1986)Eur. J. Biochem 178 277CrossRefGoogle Scholar
Murakami, A.Miyashita, H.Iseki, M.Adachi, K.Mimuro, M. 2004 Chlorophyll in an epiphytic cyanobacterium of red algaeScience 303 1633CrossRefGoogle Scholar
Nagata, N.Tanaka, R.Satoh, S.Tanaka, A. 2005 Identification of a vinyl reductase gene for chlorophyll synthesis in and implications for the evolution of speciesPlant Cell 17 233CrossRefGoogle ScholarPubMed
Oelze, J. 1985 Analysis of bacteriochlorophyllsMethods Microbiol 18 257CrossRefGoogle Scholar
Oh-hama, T. H.Seto, H.Otake, N.Miyachi, S. 1982 13C-NMR evidence for the pathway of chlorophyll biosynthesis in green algaeBiochem. Biophys. Res. Commun 105 647CrossRefGoogle ScholarPubMed
Oh-hama, T. H.Seto, H.Miyachi, S. 1985 13C-nuclear magnetic resonance studies of the biosynthesis of 5-aminolevulinic acid destined for chlorophyll biosynthesis in dark-grownScenedesmus obliquus. Plant Sci 42 153CrossRefGoogle Scholar
Oh-hama, T. H.Seto, H.Miyachi, S. 1985 13C-nuclear magnetic resonance studies on bacteriochlorophyll biosynthesis inRhodopseudomonas spheroides S. Arch. Biochem. Biophys 237 72CrossRefGoogle Scholar
Oster, U.Tanaka, R.Tanaka, A.Rüdiger, W. 2000 Cloning and functional expression of the gene encoding the key enzyme for chlorophyll biosynthesis (CAO) fromArabidopsis thaliana. Plant J 21 306Google Scholar
Ouchane, S.Steunou, A.-S.Picaud, M.Astier, C. 2004 Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria: A strategy adopted to bypass the repressive oxygen control systemJ. Biol. Chem 279 6385CrossRefGoogle ScholarPubMed
Pettit, G. R.Kantoci, D.Doubec, D. L.Tucker, B. E.Petit, W. E.Schroll, E. M. 1993 Isolation of the nickel-chlorin chelate, tunichlorin, from the South Pacific Ocean sea hareDolabella auricularia. J. Nat. Prod 56 1981CrossRefGoogle ScholarPubMed
Phillips, J. N. 1963 Physico-chemical properties of porphyrinsComprehensive Biochemistry 9 Florkin, M.Stotz, E. H.AmsterdamElsevier34Google Scholar
Porra, R. J. 1997 Recent progress in porphyrin and chlorophyll biosynthesisPhotochem. Photobiol 65 492CrossRefGoogle Scholar
Porra, R. J. 2006 Spectrometric assays for plant, algal and bacterial chlorophyllsChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer95CrossRefGoogle Scholar
Porra, R.J.Scheer, H. 2000 18O and mass spectrometry in chlorophyll research: derivation and loss of oxygen atoms at the periphery of the chlorophyll macrocycle during biosynthesis, degradation and adaptationPhotosynth. Res 66 159CrossRefGoogle Scholar
Porra, R. J.Klein, O.Wright, P. E. 1982 13C-NMR studies of chlorophyll biosynthesis in higher plants: an unequivocal proof of the participation of the C5 pathway and evidence of a new route for the incorporation of glycineBiochem. Int 5 345Google Scholar
Porra, R. J.Klein, O.Wright, P. E. 1983 The proof by 13C-NMR spectroscopy of the predominance of the C5 pathway over the Shemin pathway in chlorophyll biosynthesis in higher plants and of the formation of the methyl ester group of chlorophyll from glycineEur. J. Biochem 130 509CrossRefGoogle ScholarPubMed
Porra, R. J.Schäfer, W.Cmiel, E.Katheder, I.Scheer, H. 1993 Derivation of the formyl-group oxygen of chlorophyll from molecular oxygen in greening leaves of a higher plant FEBS Lett 323 31CrossRefGoogle ScholarPubMed
Porra, R. J.Schäfer, W.Cmiel, E.Katheder, I.Scheer, H. 1994 The derivation of the formyl-group oxygen of chlorophyll in higher plants from molecular oxygen: Achievement of high enrichment of the 7-formyl group oxygen from 18O2 in greening maize leavesEur. J. Biochem 219 671CrossRefGoogle ScholarPubMed
Porra, R. J.Schäfer, W.Katheder, I.Scheer, H. 1995 The derivation of the oxygen atoms of the 131-oxo and 3-acetyl groups of bacteriochlorophyll from water in cells adapting from respiratory to photosynthetic conditions: evidence for an anaerobic pathway for the formation of cyclic ring EFEBS Lett 371 21CrossRefGoogle Scholar
Porra, R. JSchäfer, W.Gad'on, N.Katheder, I.Drews, G.Scheer, H. 1996 Origin of the two carbonyl oxygens of bacteriochlorophyll : Demonstration of two different pathways for the formation of ring E in and , and of a common hydratase mechanism for 3-acetyl group formationEur. J. Biochem 239 83CrossRefGoogle Scholar
Porra, R. J.Pfündel, E. P.Engel, N. 1997 Metabolism and function of photosynthetic pigmentsPhytoplankton Pigments in Oceanography: Guidelines to Modern MethodsJeffrey, S. W.Mantoura, R. F. C.Wright, S. W.ParisUNESCO Publishing85Google Scholar
Porra, R. J.Urzinger, M.Winkler, J.Bubenzer, C.Scheer, H. 1998 Biosyntheis of the 3-acetyl and 131-oxo groups of bacteriochlorophyll in the facultative aerobic bacterium, : The presence of both oxygenase and hydratase pathways for isocyclic ring formationEur. J. Biochem 257 185CrossRefGoogle Scholar
Rebeiz, C. A.Wu, S. M.Kuhadja, M.Daniell, H.Perkins, E. J. 1983 Chlorophyll biosynthetic routes and chlorophyll chemical heterogeneity in plantsMol. Cell. Biochem 57 97CrossRefGoogle ScholarPubMed
Reid, J. D.Hunter, C. N. 2004 Magnesium-dependent ATPase activity and cooperativity of magnesium chelatase from sp. PCC6803J. Biol. Chem 279 26893CrossRefGoogle ScholarPubMed
Reinbothe, S.Reinbothe, C.Lebedev, N.Apel, K. 1996 PORA and PORB, two light-dependent protochlorophyllide reducing enzymes of angiosperm chlorophyll biosynthesisPlant Cell 8 763CrossRefGoogle ScholarPubMed
Reinbothe, S.Pollmann, S.Reinbothe, C. 2003 conversion of protochlorophyllide to protochlorophyllide in barley: Evidence for a novel role of 7-formyl reductase in the prolamellar bodies of etioplastsJ. Biol. Chem 278 800CrossRefGoogle Scholar
Rüdiger, W. 2006 Biosynthesis of chlorophylls and : the last stepsChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer189CrossRefGoogle Scholar
Rüdiger, W.Grimm, B. 2006 Chlorophyll metabolism, an overviewChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer133CrossRefGoogle Scholar
Rzeznicka, K.Walker, C. J.Westergren, T.Kannangara, C. G.von Wettstein, D.Merchant, S.Gough, S. P.Hansson, M. 2005 encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesisProc. Natl. Acad. Sci. USA 102 5886CrossRefGoogle ScholarPubMed
Sachs, J. P.Repeta, D. J.Goericke, R. F. 1999 Nitrogen and carbon isotopic ratios of chlorophyll from marine phytoplanktonGeochim. Cosmochim. Acta 63 1431CrossRefGoogle Scholar
Sano, S.Granick, S. 1961 Mitochondrial coproporphyrinogen oxidase and protoporphyrin formationJ. Biol. Chem 236 1173Google ScholarPubMed
Sauer, K.Smith, J. R. L.Schultz, A. J. 1966 The dimerization of chlorophyll , chlorophyll and bacteriochlorophyll in solutionJ. Am. Chem. Soc 66 2681CrossRefGoogle Scholar
Scheer, H. 1991 Chemistry of chlorophyllsChlorophyllsScheer, H.Raton, BocaCRC Press3Google Scholar
Scheer, H 2003 The pigmentsLight-harvesting Antennas in PhotosynthesisGreen, B. R.Parsons, W. W.DordrechtSpringer29CrossRefGoogle Scholar
Scheer, H. 2006 An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applicationsChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer1Google Scholar
Scheer, H.Katz, J. J. 1974 Structure of bacteriochlorophyll J. Am. Chem. Soc 96 3714CrossRefGoogle Scholar
Scheumann, V.Schoch, S.Rüdiger, W. 1998 Chlorophyll formation in the chlorophyll reductase requires reduced ferredoxinJ. Biol. Chem 273 35102CrossRefGoogle ScholarPubMed
Schneegurt, M. A.Beale, S. I. 1992 Origin of the chlorophyll formyl oxygen in Biochemistry 31 11677CrossRefGoogle Scholar
Smith, J. H. C.Benitez, A. 1955 Chlorophylls: analysis in plant materialsModern Methods of Plant Analysis IV Paech, K.Tracey, M. V.BerlinSpringer142Google Scholar
Smith, A. G.Marsh, O.Elder, G. H. 1993 Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher plantsBiochem. J 292 503CrossRefGoogle ScholarPubMed
Stanier, R. Y.Smith, J. H. C. 1960 The chlorophylls of green bacteriaBiochim. Biophys. Acta 41 478CrossRefGoogle ScholarPubMed
Steiner, R. 1981 Bacteriochlorophyll b aus Ectothiorhodospira halochlorisZulassungsarbeitUniversity of MunichGoogle Scholar
Strik, J. J. T. W. A. 1973 Chemical porphyria in Japanese quail Enzyme 16 211CrossRefGoogle ScholarPubMed
Su, Q.Frick, G.Armstrong, G.Apel, K. 2001 POR C of : a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by lightPlant Mol. Biol 47 805CrossRefGoogle Scholar
Suzuki, T.Shioi, Y. 2002 Re-examination of Mg-dechelation reaction in the degradation of chlorophylls using chlorophyllin as a substratePhotosynth. Res 73 217CrossRefGoogle Scholar
Sytina, O. A.Heyes, D. J.Hunter, C. N.Alexandre, M. T.van Stokkum, I. H. M.van Grondelle, R.Groot, M. L. 2008 Conformational changes in an ultrafast light-driven enzyme determine catalytic activityNature 456 1001CrossRefGoogle Scholar
Tamiaki, H.Shibata, R.Mizoguchi, T. 2007 The 17-propionate function of (bacterio)chlorophylls: biological implication of their long esterifying chains in photosynthetic systemsPhotochem. Photobiol 83 152Google ScholarPubMed
Tanaka, A.Ito, H.Tanaka, R.Tanaka, N. K.Okada, K. 1998 Chlorophyll oxygenase (CAO) is involved in chlorophyll formation from chlorophyll Proc. Natl. Acad. Sci. USA 95 12719CrossRefGoogle ScholarPubMed
Van de Meent, E. J.Kobayashi, M.Erkelens, C.van Veelen, P. A.Amesz, J.Watanabe, T. 1991 Identification of 81-hydroxychlorophyll as a functional reaction center pigment inHeliobacteria. Biochim. Biophys. Acta 1058 356CrossRefGoogle Scholar
Walker, C. J.Willows, R. D. 1997 Mechanism and regulation of Mg-chelataseBiochem. J 327 321CrossRefGoogle ScholarPubMed
Walker, C. J.Mansfield, K. E.Rezzano, I. N.Hanamoto, C. M.Smith, K. M.Castelfranco, P. A. 1988 The magnesium-protoporphyrin IX (oxidative) cyclase system: studies on the mechanism and specificity of the reactionBiochem. J 255 685Google ScholarPubMed
Willett, J.Smart, J. L.Bauer, C. E. 2007 RegA control of bacteriochlorophyll and carotenoid synthesis in J. Bacteriol 189 7765CrossRefGoogle ScholarPubMed
Willows, R. D. 2003 Biosynthesis of chlorophylls from protoporphyrin IXNat. Prod. Rep 20 327CrossRefGoogle ScholarPubMed
Willows, R. D.Kriegel, A. M. 2008 Molecular structure and biosynthesis of pigments and cofactorsThe Purple Photosynthetic BacteriaHunter, C. N.Daldal, F.Thurnauer, M. C.Beatty, J. T.DordrechtSpringer57Google Scholar
Xu, H.Vavilin, D.Vermaas, W. 2002 The presence of chlorophyll in sp. PCC 6803 disturbs tetrapyrrole biosynthesis and enhances chlorophyll degradationJ. Biol. Chem 277 42726CrossRefGoogle ScholarPubMed
Yaronskaya, E.Grimm, B. 2006 The pathway of 5-aminolevulinic acid to protochlorophyllide and protohemeChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer173CrossRefGoogle Scholar
Yee, W. C.Eglsaer, S. J.Richards, W. S. 1989 Confirmation of a ping-pong mechanism for S-adenosyl-L-methionine:Mg-protoporphyrin methyl-transferase of etiolated wheat by an exchange mechanismBiochem. Biophys. Res. Commun 162 483CrossRefGoogle Scholar
Zapata, M.Garrido, G. L.Jeffrey, S. W. 2006 Chlorophyll pigments: current statusChlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer39CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×