Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T15:48:56.893Z Has data issue: false hasContentIssue false

6 - Cognitive Control and Schizophrenia: Psychological and Neural Mechanisms

Published online by Cambridge University Press:  20 May 2010

Deanna M. Barch
Affiliation:
Department of Psychology, Washington University, Campus Box 1125, One Brookings Drive, St. Louis, MO 63130
Todd S. Braver
Affiliation:
Department of Psychology, Washington University, Campus Box 1125, One Brookings Drive, St. Louis, MO 63130
Randall W. Engle
Affiliation:
Georgia Institute of Technology
Grzegorz Sedek
Affiliation:
Warsaw School of Social Psychology and Polish Academy of Sciences
Ulrich von Hecker
Affiliation:
Cardiff University
Daniel N. McIntosh
Affiliation:
University of Denver
Get access

Summary

Schizophrenia is a complex and debilitating psychiatric disorder that affects approximately one percent of the population. Lay conceptions of schizophrenia typically focus on symptoms such as hallucinations, delusions, and disorganized speech, which are often considered the hallmark features of this disorder. However, clinicians, researchers, and theorists have long noted that individuals with schizophrenia also commonly suffer from disturbances in memory and cognition, often severely so. Interestingly, recent research suggests that disturbances in social and occupational functioning in individuals with schizophrenia may be more influenced by the severity of their cognitive deficits than the severity of symptoms such as hallucinations and delusions (Green, Kern, Braff, & Mintz, 2000). Such findings have led to a resurgence of interest in identifying the nature of cognitive abnormalities in schizophrenia. A close examination of the types of symptoms and cognitive disturbances displayed by individuals suggests that many of these disturbances appear to reflect an inability to control or regulate their cognitive and emotional states. In this chapter, we review the evidence that one of the core cognitive disturbances in schizophrenia is a deficit in one or more components of executive function, which leads to disturbances in the ability to appropriately regulate thoughts and behavior in accordance with internal goals. More specifically, we suggest that individuals with schizophrenia suffer from a disturbance in a specific type of executive control process that we refer to as a deficit in the ability to represent and maintain context.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., et al. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. Journal of Neuroscience, 22, 3708–3719.CrossRefGoogle Scholar
Adams, J., Fauz, S. F., Nestor, P. G., Shenton, M. E., Marcy, B., Smith, S. R., et al. (1993). ERP abnormalities during semantic processing in schizophrenia. Schizophrenia Research, 10, 247–257.CrossRefGoogle Scholar
Alain, C., McNeely, H. E., Yu, H., Christensen, B. K., & West, R. (2002). Neurophysiological evidence of error monitoring deficits in patients with schizophrenia. Cerebral Cortex, 12, 840–846.CrossRefGoogle ScholarPubMed
Angrist, B., Corwin, J., Barlett, B., & Cooper, T. (1987). Early pharmacokinetics and clinical effects of oral d-amphetamine in normal subjects. Biological Psychiatry, 22, 1357–1368.CrossRefGoogle ScholarPubMed
Arnsten, A. F., Cai, J. X., Murphy, B. L., & Goldman-Rakic, P. S. (1994). Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology, 116, 143–151.CrossRefGoogle ScholarPubMed
Arnsten, A. F., Cai, J. X., Steere, J. C., & Goldman-Rakic, P. S. (1995). Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor function in monkeys. Journal of Neuroscience, 15, 3429–3439.CrossRefGoogle ScholarPubMed
Arnsten, A. F., & Goldman-Rakic, P. S. (1998). Noise stress impairs prefrontal cortical cognitive function in monkeys: Evidence for a hyperdopaminergic mechanism. Archives of General Psychiatry, 55, 362–368.CrossRefGoogle ScholarPubMed
Aron, A. R., Dowson, J. H., Sahakian, B. J., & Robbins, T. W. (2003). Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 54, 1465–1468.CrossRefGoogle ScholarPubMed
Baddeley, A. (1994). The magical number seven: Still magic after all these years. Psychological Review, 101, 353–356.CrossRefGoogle ScholarPubMed
Baddeley, A. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology, 49, 5–28.CrossRefGoogle Scholar
Baddeley, A. D. (1986). Working memory. New York: Oxford University Press.Google ScholarPubMed
Baddeley, A. D. (1993). Working memory or working attention? In A. D. Baddeley & L. Weiskrantz (Eds.), Attention: Selection, awareness, and control: A tribute to Donald Broadbent (pp. 152–170). Oxford: Clarendon Press.Google Scholar
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory?Trends in Cognitive Science, 4, 417–423.CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. J. (1994). Developments in the concept of working memory. Neuropsychology, 8, 485–493.CrossRefGoogle Scholar
Baddeley, A. D., & Logie, R. H. (1999). Working memory: The multiple-component model. In Miyake, A. & Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Balota, D. A., Dolan, P. O., & Duchek, J. M. (2000). Memory changes in healthy older adults. In Tulving, E. & Craik, F. I. M. (Eds.), The Oxford handbook of memory (pp. 395–409). New York: Oxford University Press.Google Scholar
Band, G., & Kok, A. (2000). Age effects on response monitoring in a mental rotation task. Biological Psychology, 51, 201–221.CrossRefGoogle Scholar
Barch, D. M. (in press). Pharmacological manipulations of human working memory. Psychopharmacology.Google Scholar
Barch, D. M., Braver, T. S., Akbudak, E., Conturo, T., Ollinger, J., & Snyder, A. V. (2001). Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Cerebral Cortex, 11, 837–848.CrossRefGoogle ScholarPubMed
Barch, D. M., Braver, T. S., Nystom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35, 1373–1380.CrossRefGoogle ScholarPubMed
Barch, D. M., & Carter, C. S. (1998). Selective attention in schizophrenia: Relationship to verbal working memory. Schizophrenia Research, 33, 53–61.CrossRefGoogle ScholarPubMed
Barch, D. M., & Carter, C. S. (in preparation). The influence of d-amphetamine on cognition and language in medicated patients with schizophrenia. Manuscript in preparation.
Barch, D. M., Carter, C. S., Braver, T. S., McDonald, A., Sabb, F. W., Noll, D. C., et al. (2001). Selective deficits in prefrontal cortex regions in medication naive schizophrenia patients. Archives of General Psychiatry, 50, 280–288.CrossRefGoogle Scholar
Barch, D. M., Carter, C. S., & Cohen, J. D. (2003). Context processing deficit in schizophrenia: Diagnostic specificity, 4-week course, and relationships to clinical symptoms. Journal of Abnormal Psychology, 112, 132–143.CrossRefGoogle Scholar
Barch, D. M., Carter, C. S., & Cohen, J. D. (in press). Process dissociation analyses of Stroop performance in schizophrenia. Neuropsychology.Google Scholar
Barch, D. M., Carter, C. S., Hachten, P. C., & Cohen, (1999). The “benefits” of distractibility: The mechanisms underlying increased Stroop effects in schizophrenia. Schizophrenia Bulletin, 24, 749–762.CrossRefGoogle Scholar
Barch, D. M., Carter, C., Perlstein, W., Baird, J., Cohen, J., & Schooler, N. (1999). Increased Stroop facilitation effects in schizophrenia are not due to increased automatic spreading activation. Schizophrenia Research, 39, 51–64.CrossRefGoogle Scholar
Barch, D. M., Mitropoulou, V., Harvey, P. D., New, A. S., Silverman, J. M., & Siever, L. J. (in press). Context processing deficits in schizotypal personality disorder. Journal of Abnormal Psychology.Google Scholar
Bates, A. T., Kiehl, K. A., Laurens, K. R., & Liddle, P. F. (2002). Error-related negativity and correct response negativity in schizophrenia. Clinical Neurophysiology, 113, 1454–1463.CrossRefGoogle Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. C. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.CrossRefGoogle ScholarPubMed
Braver, T. S. (1997). Mechanisms of cognitive control: A neurocomputational model. Unpublished doctoral disseration, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
Braver, T. S., Barch, D. M., & Cohen, J. D. (1999a). Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function. Biological Psychiatry, 46, 312–328.CrossRefGoogle Scholar
Braver, T. S., Barch, D. M., & Cohen, J. D. (1999b). Mechanisms of cognitive control: Active memory, inhibition, and the prefrontal cortex (Technical Report No. PDP. CNS.99.1). Pittsburgh PA: Carnegie Mellon University.Google Scholar
Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., et al. (2001). Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging. Journal of Experimental Psychology: General, 130, 746–763.CrossRefGoogle ScholarPubMed
Braver, T. S., & Bongiolatti, S. R. (2002). The role of the frontopolar prefrontal cortex in subgoal processing during working memory. NeuroImage, 15, 523–536.CrossRefGoogle ScholarPubMed
Braver, T. S., & Cohen, J. D. (1999). Dopamine, cognitive control, and schizophrenia: The gating model. Progress in Brain Research, 121, 327–349.CrossRefGoogle ScholarPubMed
Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In Monsell, S. & Driver, J. (Eds.), Attention and performance XVIII (pp. 713–738). Cambridge, MA: MIT Press.Google Scholar
Braver, T. S., & Cohen, J. D. (2001). Working memory, cognitive control, and the prefrontal cortex: Computational and empirical studies. Cognitive Processing, 2, 25–55.Google Scholar
Braver, T. S., Cohen, J. D., & Barch, D. M. (2002). The role of the prefrontal cortex in normal and disordered cognitive control: A cognitive neuroscience perspective. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of Frontal Lobe Function (pp. 428–448). Oxford: Oxford University Press.CrossRefGoogle Scholar
Braver, T. S., Cohen, J. D., & McClelland, J. L. (1997). An integrated computational model of dopamine function in reinforcement learning and working memory. Paper presented at the Society for Neuroscience Abstracts, New Orleans.
Braver, T. S., Cohen, J. D., & Servan-Schreiber, D. (1995). Neural network simulations of schizophrenic performance in a variant of the CPT-AX: A predicted double dissociation. Schizophrenia Research, 15, 110.CrossRefGoogle Scholar
Braver, T. S., Satpute, A. B., Keys, B. A., & Racine, C. A. (in press). Context processing and context maintenance in healthy aging and early-stage dementia of the Alzheimer's type. Psychology and Aging.Google Scholar
Brown, C., & Hagoort, P. (1993). The processing nature of the N400: evidence from masked priming. Journal of Cognitive Neuroscience, 5, 34–44.CrossRefGoogle ScholarPubMed
Brozoski, T. J., Brown, R. M., Rosvold, H. E., & Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science, 205, 929–931.CrossRefGoogle ScholarPubMed
Burbridge, J., & Barch, D. M. (2002). Emotional valence and reference disturbance in schizophrenia. Journal of Abnormal Psychology, 111, 186–191.CrossRefGoogle Scholar
Burgess, G. C., & Braver, T. S. (submitted). Proactive interference effects on working memory can be modulated by expectancy: Evidence for dual mechanisms of cognitive control. Manuscript submitted for publication.
Cabeza, R. (2001). Functional neuroimaging of cognitive aging. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of functional neuroimaging of cognition. Cambridge, MA: MIT Press.Google Scholar
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.CrossRefGoogle ScholarPubMed
Cai, J. X., & Arnsten, A. F. T. (1997). Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. The journal of pharmacology and experimental therapeutics, 283, 183–189.Google ScholarPubMed
Carter, C. S., MacDonald III, A. W., Ross, L. L., & Stenger, V. A. (2001). Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. American Journal of Psychiatry, 158, 1423–1428.CrossRefGoogle Scholar
Carter, C. S., Robertson, L. C., & Nordahl, T. E. (1992). Abnormal processing of irrelevant information in schizophrenia: Selective enhancement of Stroop facilitation. Psychiatry Research, 41, 137–146.CrossRefGoogle ScholarPubMed
Casey, B. J., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., et al. (1997). Implication of right frontostrial circuitry in response inhibition an attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 36,Google Scholar
Castner, S. A., Williams, G. V., & Goldman-Rakic, P. S. (2000). Reversal of antiphychotic induced working memory deficits by short term dopamine D1 receptor stimulation. Science, 287, 2020–2022.CrossRefGoogle ScholarPubMed
Chapman, J., & McGhie, A. (1962). A comparative study of disordered attention in schizophrenia. In Depression and personality (pp. 487–500). Missing infoCrossRef
Chen, E. Y. H., Wong, A. W. S., Chen, R. Y. L., & Au, J. W. Y. (2001). Stroop interference and facilitation effects in first-episode schizophrenia patients. Schizophrenia Research, 48, 29–44.CrossRefGoogle Scholar
Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: Converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108, 120–133.CrossRefGoogle ScholarPubMed
Cohen, J. D., Braver, T. S., & Brown, J. W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Current Opinion in Neurobiology, 12, 223–229.CrossRefGoogle ScholarPubMed
Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex and dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99, 45–77.CrossRefGoogle Scholar
Condray, R., Steinhauer, S. R., Cohen, J. D., Kammen, D. P., & Kasparek, A. (1999). Modulation of language processing in schizophrenia: effects of context and haloperidol on the event-relate potential. Biological Psychiatry, 45, 1336–1355.CrossRefGoogle ScholarPubMed
Cornblatt, B. A., & Keilp, J. G. (1994). Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophrenia Bulletin, 20, 31–62.CrossRefGoogle ScholarPubMed
Daniel, D. G., Weinberger, D. R., Jones, D. W., Zigur, J. R., Coppola, R., Handel, S., et al. (1991). The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. The Journal of Neuroscience, 11, 1907–1917.CrossRefGoogle Scholar
Keyser, J., Backer, J.-P., Vauquelin, G., & Ebinger, G. (1990). The effect of aging on the D1 dopamine receptors in human frontal cortex. Brain Research, 528, 308–310.CrossRefGoogle ScholarPubMed
Sonneville, L. M., Njiokiktjien, C., & Bos, H. (1994). Methylphenidate and information processing: Part 1: Differentiation between responders and non-responders; Part 2: Efficacy in responders. Journal of Clinical and Experimental Neuropsychology, 16, 877–897.CrossRefGoogle Scholar
Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30, 257–303.CrossRefGoogle ScholarPubMed
Elvevg, B., Duncan, J., & McKenna, P. J. (2000). The use of cognitive context in schizophrenia: An investigation. Psychological Medicine, 30, 885–897.CrossRefGoogle Scholar
Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity and a two-factor theory of cognitive control. In Ross, B. (Ed.), The psychology of learning and motivation (Vol. 44). New York: Elsevier.Google Scholar
Falkenstein, M., Hohnsbein, J., Hoorman, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447–455.CrossRefGoogle ScholarPubMed
Falkenstein, M., Hoorman, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: a tutorial. Biological Psychology, 51, 87–107.CrossRefGoogle ScholarPubMed
Falkenstein, M., Hoorman, J., & Hohnbein, J. (2001). Changes in error-related ERPS with age. Experimental Brain Research, 138, 258–262.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1989). The prefrontal cortex (2nd ed.). New York: Raven Press.Google Scholar
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.CrossRefGoogle Scholar
Gold, J. M., Carpenter, C., Randolph, C., Goldberg, T. E., & Weinberger, D. R. (1997). Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Archives of General Psychiatry, 54, 159–165.CrossRefGoogle Scholar
Gold, J. M., Randolph, C., Carpenter, C. J., Goldberg, T. E., & Weinberger, D. R. (1992). Forms of memory failure in schizophrenia. Journal of Abnormal Psychology, 101, 487–494.CrossRefGoogle Scholar
Goldberg, T. E., Bigelow, L. B., Weinberger, D. R., Daniel, D. G., & Kleinman, J. E. (1991). Cognitive and behavioral effects of the coadministratino of dextroamphetamine and haloperidol in schizophrenia. American Journal of Psychiatry, 148, 78–84.Google Scholar
Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In Plum, F. & Mountcastle, V. (Eds.), Handbook of Physiology – The Nervous System V (Vol. 5, pp. 373–417). Bethesda, MD: American Physiological Society.Google Scholar
Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14, 477–485.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., & Brown, R. M. (1981). Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience, 6, 177–187.CrossRefGoogle ScholarPubMed
Grady, C. L. (1998). Brain imaging and age-related changes in cognition. Experimental Gerontology, 33, 661–673.CrossRefGoogle ScholarPubMed
Gray, J. R. (2001). Emotional modulation of cognitive control: Approach-withdrawal states double-dissociate spatial from verbal two-back task performance. Journal of Experimental Psychology: General, 130, 436–452.CrossRefGoogle ScholarPubMed
Gray, J. R., Braver, T. S., & Raichle, M. E. (2002). Integration of emotion and cognition in the lateral prefrontal cortex. Proceedings of the National Academy of Sciences USA, 99, 4115–4120.CrossRefGoogle ScholarPubMed
Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”?Schizophrenia Bulletin Special Issue: Psychosocial treatment for schizophrenia, 26, 119–136.CrossRefGoogle ScholarPubMed
Grillon, C., Ameli, R., & Glzer, W. M. (1991). N400 and semantic categorizaton in schizophrenia. Biological Psychiatry, 29, 467–480.CrossRefGoogle Scholar
Henik, A., Carter, C. S., Salo, R., Chaderjian, M., Kraft, L., Nordahl, T. E., et al. (2002). Attentional control and word inhibition in schizophrenia. Psychiatry Research, 110, 137–149.CrossRefGoogle Scholar
Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709.CrossRefGoogle ScholarPubMed
Jacoby, L. L., Debner, J. A., & Hay, J. F. (2001). Proactive interference, accessability bias, and process dissociations: Valid subjective reports of memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 686–700.Google Scholar
Javitt, D. C., Shelley, A., Silipo, G., & Lieberman, J. A. (2000). Deficits in auditory and visual context-dependent processing in schizophrenia. Archives of General Psychiatry, 57, 1131–1137.CrossRefGoogle Scholar
Keys, B. A., Barch, D. M., Braver, T. S., & Janowsky, J. S. (submitted). Task sensitivity to age differences in working memory: Relative superiority of the N-back paradigm. Manuscript submitted for publication.
Kimberg, D. Y., & D'Esposito, M. (2003). Cognitive effects of the dopamine receptor agonist pergolide. Neuropsychologica, 41, 1020–1027.CrossRefGoogle ScholarPubMed
Kimberg, D. Y., D'Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport, 8, 381–385.CrossRefGoogle ScholarPubMed
Kopp, B., & Rist, F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenia patients. Journal of Abnormal Psychology, 108, 337–346.CrossRefGoogle Scholar
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205.CrossRefGoogle ScholarPubMed
Levelt, W. J. M. (1989). Speaking: From intention to articulation. Cambridge, Mass: MIT Press.Google Scholar
Luciana, M., & Collins, P. F. (1997). Dopamine modulates working memory for spatial but not object cues in normal humans. Journal of Cognitive Neuroscience, 4, 58–68.CrossRefGoogle Scholar
Luciana, M., Collins, P. F., & Depue, R. A. (1995). DA and 5-HTinfluences on spatial working memory functions of prefrontal cortex. Paper presented at the Cognitive Neuroscience Society Second Annual Meeting, San Francisco, CA.
Luciana, M., Collins, P. F., & Depue, R. A. (1998). Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cerebral Cortex, 8, 218–226.CrossRefGoogle ScholarPubMed
Luciana, M., Depue, R. A., Arbisi, P., & Leon, A. (1992). Facilitation of working memory in humans by a D2 dopamine receptor agonist. Journal of Cognitive Neuroscience, 4, 58–68.CrossRefGoogle ScholarPubMed
MacDonald, A., Carter, C. S., Kerns, J. G., Ursu, S., Barch, D. M., Holmes, A. J., et al. (in submission). Specificity of prefrontal dysfunction and context processing deficts to schizophrenia in a never medicated first-episode psychotic sample. Manuscript submitted for publication.
MacDonald, A. W. (in press). Event-related fMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia. Journal of Abnormal Psychology.Google Scholar
MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.CrossRefGoogle ScholarPubMed
MacDonald, A. W., Pogue-Geile, M. F., Johnson, M. K., & Carter, C. S. (2003). A specific deficit in context processing in the unaffected siblings of patients with schizophrenia. Archives of General Psychiatry, 60, 57–65.CrossRefGoogle ScholarPubMed
Mathalon, D. H., Dedor, M., Faustman, W. O., Gray, M., Askari, N., & Ford, J. M. (2002). Response-monitoring dysfucntion in schizophrenia: An event-related brain potential study. Journal of Abnormal Psychology, 111, 22–41.CrossRefGoogle Scholar
Mattay, V. S., Berman, K. F., Ostrem, J. L., Esposito, G., Horn, J. D., Bigelow, L. B., et al. (1996). Dextroamphetamine enhances “neural network-specific” physiological signals: A positron-emission tomography rCBF study. Journal of Neuroscience, 15(August), 4816–4822.CrossRefGoogle Scholar
Mattay, V. S., Callicott, J. H., Bertolino, A., Heaton, I., Frank, J. A., Coppola, R., et al. (2000). Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage, 12, 268–275.CrossRefGoogle ScholarPubMed
Mattay, V. S., Goldberg, T. E., Fera, F., Hariri, A. R., Tessitore, A., Egan, M. F., et al. (2003). Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proceedings of the National Academy of Sciences, 100, 6186–6191.CrossRefGoogle ScholarPubMed
McClelland, J. L. (1993). Toward a theory of information processing in graded, random, and interactive networks. In Meyer, D. E. & Kornblum, S. (Eds.), Attention and Performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 655–688). Cambridge, MA: MIT Press.Google Scholar
Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. The Journal of Neuroscience, 20, 1–6.CrossRefGoogle ScholarPubMed
Mehta, M. A., Swainson, R., Gogilvie, A. D., Sahakian, B. J., & Robbins, T. W. (2001). Improved short-term spaital memory but impaired reversal learning following the dopamine D2 agonist bromocriptime in human volunteers. Psychopharmacology, 159, 10–20.CrossRefGoogle Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 21, 167–202.CrossRefGoogle Scholar
Mintzer, M., & Griffiths, R. R. (2003). Triazolam-amphetamine interaction: disociation of effects of memory versus arousal. Journal of Pharmacology, 17, 17–29.Google Scholar
Muller, U., Cramon, Y., & Pollmann, S. (1998). D1- versus D2-receptor modulation of visuospatial working memory in humans. The Journal of Neuroscience, 18, 2720–2728.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S., Ridderinkhof, K. R., Talsma, D., Coles, M. G. H., Hoyroyd, C. B., Koki, A., et al. (2002). A computational account of altered error processing in older age: Dopamine and error-related negativity. Cognitive, Affective and Behavioral Neuroscience, 2, 19–36.CrossRefGoogle ScholarPubMed
Nigg, J. T. (2003). Response inhibition and disruptive behaviors: toward a multiprocess conception of etiological heterogeneity for ADHD combined type and conduct disorder early-onset type. Annals of the New York Academy of Sciences, 1008, 170–182.CrossRefGoogle Scholar
Niznikiewicz, M. A., O'Donnell, B. F., Nestor, P. G., Smith, L., Law, S., Karapelou, M., et al. (1997). ERP assessment of visual and auditory language processing in schizophrenia. Journal of Abnormal Psychology, 106, 85–94.CrossRefGoogle Scholar
Nuechterlein, K. H., & Dawson, M. E. (1984). Information processing and attentional functioning in the developmental course of schizophrenia disorders. Schizophrenia Bulletin, 10, 160–203.CrossRefGoogle Scholar
O'Reilly, R. C., Braver, T. S., & Cohen, J. D. (1999). A biologically-based computational model of working memory. In Miyake, A. & Shah, P. (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. New York: Cambridge University Press.CrossRefGoogle Scholar
O'Reilly, R. C., Noelle, D. C., Braver, T. S., & Cohen, J. D. (2002). Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. Cerebral Cortex, 12, 246–257.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. (2002). Rethinking feelings: an fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 1215–1229.CrossRefGoogle ScholarPubMed
Ohta, K., Uchiyama, M., Matsushima, E., & Toru, M. (1999). An event-related potential study in schizophrenia using japanese sentences. Schizophrenia Research, 40, 159–170.CrossRefGoogle ScholarPubMed
Olichney, J. M., Iragui, V. J., Kutas, M., Nowacki, R., & Jeste, D. V. (1997). N400 abnormalities in late life schizophrenia and related psychoses. Biological Psychiatry, 42, 13–23.CrossRefGoogle ScholarPubMed
Park, S., & Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry, 49, 975–982.CrossRefGoogle ScholarPubMed
Perlstein, W. H., Carter, C. S., Noll, D. C., & Cohen, J. D. (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. American Journal of Psychiatry, 158, 1105–1113.CrossRefGoogle Scholar
Perlstein, W. M., Dixit, N. K., Carter, C. S., Noll, D. C., & Cohen, J. D. (2003). Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biological Psychiatry, 53, 25–38.CrossRefGoogle Scholar
Rosvold, H. E., Mirsky, A. F., Sarason, I., Bransome, E. D. Jr., Beck, L. H. (1956). A continous performance test of brain damage. Journal of Consulting Psychology, 20, 343–350.CrossRefGoogle Scholar
Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vols. 1 and 2). Cambridge, MA: MIT Press.Google Scholar
Salisbury, D., O'Donnell, B. F., McCarley, R. W., Nestor, P. G., & Shenton, M. E. (2000). Event-related potentials elicitd during a context-free homograph task in normal versus schizophrenic subjects. Psychophysiology, 37, 456–463.CrossRefGoogle ScholarPubMed
Sawaguchi, T., & Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology, 71, 515–528.CrossRefGoogle ScholarPubMed
Sawaguchi, T., Matsumura, M., & Kubota, K. (1990). Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. Journal of Neurophysiology, 63, 1401–1410.CrossRefGoogle ScholarPubMed
Servan-Schreiber, D., Cohen, J. D., & Steingard, S. (1996). Schizophrenic deficits in the processing of context: A test of a theoretical model. Archives of General Psychiatry, 53(Dec), 1105–1113.CrossRefGoogle ScholarPubMed
Shakow, D. (1962). Segmental set: A theory of the formal psychological deficit in schizophrenia. Archives of General Psychiatry, 6, 1–17.CrossRefGoogle Scholar
Silverstein, S. M., Kovacs, I., Corry, R., & Valone, C. (2000). Perceptual organization, the disorganization syndrome, and context processing in chronic schizophrenia. Schizophrenia Research, 43, 11–20.CrossRefGoogle ScholarPubMed
Sitnikova, T., Salisbury, D. F., Kuperberg, G., & Holcomb, P. J. (2002). Electrophysiological insights into language processing in schizohprenia. Psychophysiology, 39, 851–860.CrossRefGoogle Scholar
Spieler, D. H., Balota, D. A., & Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer's type. Journal of Experimental Psychology: Human Perception and Performance, 22, 461–479.Google ScholarPubMed
Strandburgh, R. J., Marsh, J. T., Brown, W. S., Asarnow, R. F., Guthrie, D., Harper, R., et al. (1997). Event-related potential correlates of linguistic information processing in schizophrenics. Biological Psychiatry, 42, 596–608.CrossRefGoogle Scholar
Stratta, P., Daneluzzo, E., Bustini, M., Casacchia, M., & Rossi, A. (1998). Schizophrenic deficits in the processing of context. Archives of General Psychiatry, 55, 186–187.CrossRefGoogle Scholar
Stratta, P., Daneluzzo, E., Bustini, M., Prosperini, P., & Rossi, A. (2000). Processing of context information in schizophrenia: relation to clinical symptoms and WCST performance. Schizophrenia Research, 44, 57–67.CrossRefGoogle ScholarPubMed
Suhara, T., Fukuda, H., Inoue, O., Itoh, T., Suzuki, K., Yamasaki, T., et al. (1991). Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology, 103, 41–45.CrossRefGoogle ScholarPubMed
Taylor, S. F., Kornblum, S., & Tandon, R. (1996). Facilitation and interference of selective attention in schizophrenia. Journal of Psychiatric Research, 30, 251–259.CrossRefGoogle Scholar
Titone, D., Holzman, P. S., & Levy, D. L. (2002). Idiom processing in schizophrenia: literal implausibility saves the day for idiom priming. Journal of Abnormal Psychology, 111, 313–320.CrossRefGoogle ScholarPubMed
Titone, D., Levy, D. L., & Holzman, P. S. (2000). Contextual insensitivity in schizophrenic language processing: evidence from lexical ambiguity. Journal of Abnormal Psychology, 109, 761–767.CrossRefGoogle ScholarPubMed
Verhaeghen, P., & Meersman, L. (1998). Aging and the Stroop effect: a meta-analysis. Psychology and Aging, 13, 120–126.CrossRefGoogle ScholarPubMed
Volkow, N. D., Gur, R. C., Wang, G.-J., Fowler, J. S., Moberg, P. J., Ding, Y.-S. et al. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155, 344–349.Google ScholarPubMed
Weinberger, D. R., Berman, K. F., & Zec, R. F. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43, 114–125.CrossRefGoogle Scholar
West, R. (1999). Age differences in lapses of intention in the stroop task. Journal of Gerontology: Psychological Sciences, 54B, P34-P43.CrossRefGoogle Scholar
West, R. (in press). The effect of aging on controlled attention and conflict processing in the Stroop task. Journal of Cognitive Neurosocience.Google Scholar
West, R., & Alain, C. (2000). Effects of task context and fluctuations of attention on neural activity supporting performance of the Stroop task. Brain Research, 873, 102–111.CrossRefGoogle ScholarPubMed
West, R., & Baylis, G. C. (1998). Effects of increased response dominance and contextual disintegration on the Stroop interference effect in older adults. Psychology & Aging, 13, 206–217.CrossRefGoogle ScholarPubMed
Williams, G. V., & Goldman-Rakic, P. S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376 (August), 572–575.CrossRefGoogle ScholarPubMed
Zgaljardic, D. J., Borod, J. C., Foldi, N. S., & Mattis, P. (2003). A review of the cognitive and behavioral sequelae of Parkinson's disease: relationship to frontostriatal circuitry. Cognitive and Behavioral Neurology, 16, 193–210.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×