Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-29T18:24:45.396Z Has data issue: false hasContentIssue false

5 - Technologies for enhancing barcode robustness

Published online by Cambridge University Press:  06 July 2010

Hiroko Kato
Affiliation:
Edith Cowan University, Western Australia
Keng T. Tan
Affiliation:
Edith Cowan University, Western Australia
Douglas Chai
Affiliation:
Edith Cowan University, Western Australia
Get access

Summary

One of the advantages of barcode technology is its fast, accurate and reliable operation. Most one-dimensional (1D) barcodes only use a checksum to ensure that the data are correctly decoded. The data of 1D barcodes are vertically redundant. This allows correct data retrieval even when the symbol has been partially damaged. When at least one horizontal path across the barcode is readable, a code with printing defects can be correctly read. Furthermore, human-readable characters are also printed below most 1D barcodes (see Figure 2.12). This allows users to input the data manually in the worst-case scenario. Hence, a checksum for error detection may be sufficient for a 1D barcode.

Moreover, two-dimensional (2D) barcodes do not have such vertical redundancy. Furthermore, they are not accompanied by human-readable characters, often because of the limitation in printing area for the data encoded in 2D barcodes. Printing the encoded data near the symbol may be possible when using index 2D barcodes with limited data capacity. However, considering the space efficiency advantage of 2D barcodes, it is reasonable not to print human-readable characters along with the 2D barcode symbols. In some cases, it might be impossible owing to space restrictions. This prevents users from correcting data manually if an error should occur. Hence, 2D barcodes need a means of not only detecting errors but also correcting them.

Error detection and correction codes

Among the many error detection and/or correction techniques, the one most commonly used for 2D barcodes is the Reed–Solomon code. Nearly all database 2D barcodes have adopted this technique.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×