Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T04:21:21.606Z Has data issue: false hasContentIssue false

7 - Test and characterization

Published online by Cambridge University Press:  06 July 2010

Karl Mathia
Affiliation:
Zitech Engineering, LLC
Get access

Summary

This chapter presents procedures and relevant standards for testing and characterizing robots designed for electronics manufacturing in cleanroom environments. Several robot performance parameters are of interest: airborne particle contamination, surface particle contamination, positioning accuracy and repeatability, path accuracy and repeatability, vibration, and axis decoupling. The presented examples apply directly to substrate handling in semiconductor manufacturing and related industries. In the 1970s a typical semiconductor product yield, the number of semiconductor devices suitable for sale compared to the total number manufactured, was 10–15% in the USA. In Japan 60–90% was achieved through rigorous contamination control (Donovan, 2001). Today (2009) the product yield in modern semiconductor factories exceeds 90%, the result of contamination control equipment and procedures. Sections 7.1 and 7.2 present particle contamination tests.

Airborne particle contamination

Airborne particle contamination (APC) generated by substrate-handling robots can be a critical performance index, depending on the cleanliness requirements, and must be tested and characterized under normal robot operating conditions. The number of airborne particles is measured at selected locations in the immediate vicinity of the robot. For example, Sematech standard 92051107A-STD recommends measuring ‘particles per wafer pass,’ a performance criterion specified in SEMI standard E14. Substrate-handling robots should be tested and certified as subassemblies, and their contamination contribution specified as part of the total tool contamination allowance. An APC test procedure for individual robots is described below. Note that APC is different from airborne molecular contamination (AMC), a non-particle gaseous substance that can also be detrimental to a product or process.

Type
Chapter
Information
Robotics for Electronics Manufacturing
Principles and Applications in Cleanroom Automation
, pp. 179 - 219
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×