Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T06:57:59.806Z Has data issue: false hasContentIssue false

12 - Generation of epileptiform discharge by local circuits of neocortex

from Section 3 - ‘Normal’ brain mechanisms that support epileptiform activities

Published online by Cambridge University Press:  03 May 2010

Philip A. Schwartzkroin
Affiliation:
University of Washington
Get access

Summary

Introduction

So many books have been written on epilepsy that it may seem rash to add another …

(Jackson, 1874)1

The neuronal essence of seizures is exceptionally synchronous activity. Cortical neurons performing normal tasks tend to fire with relatively low synchrony (Abeles, 1982), but during a seizure the activity of affected neurons is abruptly usurped. The kernel of this idea was suggested by John Hughlings Jackson in the nineteenth century; however, the pathological changes that allow hypersynchrony, and the mechanisms that mediate it, are still elusive (Dichter & Ayala, 1987). Synchrony necessarily requires interactions between neurons, and the most obvious substrate for interaction is synaptic circuitry. Here, we focus on the neurons and circuitry involved in epileptiform activity within the neocortex. The justification for another discourse on the subject is recent research that suggests specific circuit-oriented mechanisms for epileptogenesis.

We begin with a brief description of our experimental model, essentially just an isolated fragment of neocortex in a controlled environment. Our concern is the minimum amount of tissue necessary for epileptiform activity, and in the cerebral cortex that turns out to be a surprisingly small volume.

Type
Chapter
Information
Epilepsy
Models, Mechanisms and Concepts
, pp. 388 - 423
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×