Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-06T11:17:39.762Z Has data issue: false hasContentIssue false

5 - Interpreting Gödel's second incompleteness theorem for Q

Published online by Cambridge University Press:  07 January 2010

Curtis Franks
Affiliation:
University of Notre Dame, Indiana
Get access

Summary

HISTORICAL BACKGROUND

In the 1950s Georg Kreisel posed the question whether the provability of Gödel's second incompleteness theorem for Robinson's arithmetic Q, if such a proof were ever discovered, could be seen as a demonstration of “the unprovability in Q of Q's consistency.” According to Kreisel this question arises because Gödel's techniques were not adequately arithmetical: “Gödel's work on formulae expressing the consistency of classical arithmetic goes beyond arithmetic concepts because it uses metamathematical interpretation” ([1958], p. 177). In Gödel's [1931] paper, arithmetical formulas “express” metatheoretical properties like consistency through binumeration. Since a binumeration is a correlation between some formal sentences and some yet-to-be-formalized meta-mathematics, the binumeration cannot be verified by purely arithmetic means. That is, the binumeration cannot be arithmetized. Thus in order to verify that a formula expresses consistency, one must step outside of the arithmetical setting. Gödel had not shown that an arithmetic theory could pose the question of its own consistency on its own terms. Kreisel suggested that this might be possible, but that in very weak settings like Robinson's theory it was unlikely.

In [1960] Solomon Feferman proposed a method to allow arithmetical theories to formulate statements about their own metatheory more directly. He presented a style of arithmetization in which one need not rely on evaluation outside of the setting of arithmetic to determine whether a formula properly expresses a meta-mathematical property. The technique proceeds thus: One wants a sentence of arithmetic to express, for example, that arithmetic is consistent.

Type
Chapter
Information
The Autonomy of Mathematical Knowledge
Hilbert's Program Revisited
, pp. 139 - 168
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×