Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T22:17:11.277Z Has data issue: false hasContentIssue false

1 - Semiconductors, alloys, heterostructures

Published online by Cambridge University Press:  03 February 2010

Giovanni Ghione
Affiliation:
Politecnico di Torino
Get access

Summary

Introducing semiconductors

Single-crystal semiconductors have a particularly important place in optoelectronics, since they are the starting material for high-quality sources, receivers and amplifiers. Other materials, however, can be relevant to some device classes: polycrystalline or amorphous semiconductors can be exploited in light-emitting diodes (LEDs) and solar cells; dielectrics (also amorphous) are the basis for passive devices (e.g., waveguides and optical fibers); and piezoelectric (ferroelectric) crystals such as lithium niobate are the enabling material for a class of electrooptic (EO) modulators. Moreover, polymers have been recently exploited in the development of active and passive optoelectronic devices, such as emitters, detectors, and waveguides (e.g., fibers). Nevertheless, the peculiar role of single-crystal semiconductors justifies the greater attention paid here to this material class with respect to other optoelectronic materials.

From the standpoint of electron properties, semiconductors are an intermediate step between insulators and conductors. The electronic structure of crystals generally includes a set of allowed energy bands, that electrons populate according to the rules of quantum mechanics. The two topmost energy bands are the valence and conduction band, respectively, see Fig. 1.1. At some energy above the conduction band, we find the vacuum level, i.e., the energy of an electron free to leave the crystal. In insulators, the valence band (which hosts the electrons participating to the chemical bonds) is separated from the conduction band by a large energy gap Eg, of the order of a few electronvolts (eV). Due to the large gap, an extremely small number of electrons have enough energy to be promoted to the conduction band, where they could take part into electrical conduction. In insulators, therefore, the conductivity is extremely small.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×