Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T15:40:53.159Z Has data issue: false hasContentIssue false

9 - The Cenozoic Cool Mode: early Eocene to late Miocene

Published online by Cambridge University Press:  16 February 2010

Lawrence A. Frakes
Affiliation:
University of Adelaide
Jane E. Francis
Affiliation:
University of Leeds
Jozef I. Syktus
Affiliation:
Division Atmospheric Research CSIRO, Australia
Get access

Summary

The early stages of the Cenozoic Cool Mode started with the cooling in the early Eocene (55 Ma). From that time onwards the climate of the Earth gradually cooled from the Warm Mode of the late Cretaceous to early Tertiary to the cool glacial climates of today. Important changes which occurred during this phase include the enhancement of climatic zonation and the development of a thermally stratified ocean. Unlike the Palaeozoic record, the early part of the Cenozoic cooling is not recorded simply by the presence of ancient glacial deposits. In fact, any direct evidence of extensive glacial ice at the poles during the Tertiary is scarce, principally because the rocks in these regions are now covered with ice. However, the presence of ice-rafted debris in deep ocean cores provides positive evidence for the presence of at least seasonal ice.

The principal evidence for Tertiary cooling is documented in the oxygen isotope record of calcareous foraminifera from the oceans. This illustrates the decline in ocean temperatures and the build-up of ice at the poles (mainly the South Pole) from about 55 Ma onwards (Fig. 9.1). Climate evidence from fossil plant assemblages reflects the same cooling trend. Documentation of the Tertiary cooling is important because it illustrates the crucial transformation phase from a non-glacial to glacial state, as recorded by several geological parameters. This trend or transformation can be used as a model to determine the history of glacial build-up during former Cool Modes, such as those in the Palaeozoic, for which data are less reliable.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×