Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T04:13:44.996Z Has data issue: false hasContentIssue false

28 - Viewing geometry and gradients of horizontal disparity

Published online by Cambridge University Press:  05 May 2010

Colin Blakemore
Affiliation:
University of Oxford
Get access

Summary

Introduction

Though stereoscopic vision is often regarded as a means of gauging distance, human stereo depth judgements depart strikingly from the predictions of geometry. Not only are judgements of absolute distance highly inaccurate, as shown by Helmholtz's experiments using a single vertical thread against a featureless background (Helmholtz, 1909), but also the perceived distance of an object is strongly affected by other objects nearby (Gogel, 1963; Gogel & Mershon, 1977), with the result that relative distance is often incorrectly estimated.

In the case of horizontal rows of features, what stereo vision seems to deliver is a measure of local protrusion or curvature (Mitchison & Westheimer, 1984). For instance, a linear horizontal gradient of disparity generates no curvature and is therefore poorly perceived. However, the same is not true of a vertical gradient of (horizontal) disparity, and indeed there is known to be a marked horizontal/vertical anisotropy in stereo perception (Rogers & Graham, 1983). We suggest here a rationale for some of these phenomena. It turns out that oblique viewing introduces gradients of horizontal disparity which are largely eliminated by the curvature measure, thereby allowing a stable percept under changing viewing conditions. These disparity gradients are present only in the horizontal direction, and this may be the basis of the horizontal/vertical anisotropy.

Depth judgements in horizontal rows of features

We first review the experiments which show how stereo depth judgements are made in figures consisting of horizontal rows of lines or dotted lines (Mitchison & Westheimer, 1984).

Type
Chapter
Information
Vision
Coding and Efficiency
, pp. 302 - 309
Publisher: Cambridge University Press
Print publication year: 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×