Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T14:21:37.862Z Has data issue: false hasContentIssue false

4 - Minimum viable population size in the presence of catastrophes

Published online by Cambridge University Press:  21 January 2010

Warren J. Ewens
Affiliation:
Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
P. J. Brockwell
Affiliation:
Department of Statistics, Colorado State University, Fort Collins, CO 80521
J. M. Gani
Affiliation:
Department of Statistics, University of Kentucky, Lexington, KT 40506
S. I. Resnick
Affiliation:
Department of Statistics, Colorado State University, Fort Collins, CO 80521
Get access

Summary

There are two broad concepts of a minimum viable population (MVP) size. The first is a genetic concept, based on the rate at which genetic variation in a population is lost, and hence fitness decreased, through random genetic drift. The second is a demographic concept and is concerned with the probability of complete extinction of a population through random demographic forces. Although at an overall level these concepts are related, since inbreeding decreases fecundity and increases the death rate, present theory treats these as distinct concepts, since normal practice has been to assume the population size constant in defining and calculating the genetic MVP. For convenience, we also preserve this distinction in this chapter, and note that until a generalized theory covering both concepts is attempted, confusion may arise by the loose transfer of a numerical value of the MVP from the genetic to the demographic case, particularly the genetically derived values offered by Franklin (1980) and Soulé (1980).

For each of these two MVP concepts, the numerical value for the MVP eventually reached will depend on two assumptions. The first is the criterion chosen to define an MVP; for example, using the demographic concept, the size of the population which guarantees 95% probability of survival for y years clearly depends on the value chosen for y.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×