Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-26T03:55:46.149Z Has data issue: false hasContentIssue false

14 - Models of solar activity

Published online by Cambridge University Press:  19 January 2010

Karl Schindler
Affiliation:
Ruhr-Universität, Bochum, Germany
Get access

Summary

In the Solar System the most spectacular manifestations of space plasma activity are the large-scale solar eruptions, such as coronal mass ejections (CMEs), solar flares and prominence eruptions, as briefly described in Section 2.2. In this chapter we attempt to address the underlying physical processes. The approach leaves aside many details, although they would be exciting from a more morphological point of view. Instead, we are interested in the basic physical mechanisms and concentrate on the models and numerical simulations, which provide an excellent frame for our discussion. Naturally, as in the previous chapter on magnetospheric activity, the focus is on loading and release processes.

As we will see, the building blocks, such as ideal dynamics, magnetic reconnection, formation of thin current layers, plasmoid or flux rope formation are relevant elements also in current modelling of solar activity. However, in most solar activity models their role is different from their magnetospheric role. In other words, the building blocks are put together in a different way.

General aspects

Observations strongly suggest that solar eruption processes are of the loading/release type. The energy flux into the corona from below is considerably smaller than the energy flux that would be required if the eruptions were directly driven by the subphotospheric dynamics. In fact, it has been argued that models based on direct driving have been shown to be grossly inconsistent with observations (e.g., Forbes, 2000a).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Models of solar activity
  • Karl Schindler, Ruhr-Universität, Bochum, Germany
  • Book: Physics of Space Plasma Activity
  • Online publication: 19 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618321.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Models of solar activity
  • Karl Schindler, Ruhr-Universität, Bochum, Germany
  • Book: Physics of Space Plasma Activity
  • Online publication: 19 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618321.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Models of solar activity
  • Karl Schindler, Ruhr-Universität, Bochum, Germany
  • Book: Physics of Space Plasma Activity
  • Online publication: 19 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618321.015
Available formats
×