Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T07:46:10.052Z Has data issue: false hasContentIssue false

13 - Comparative ungulate dynamics: the devil is in the detail

Published online by Cambridge University Press:  20 May 2010

R. M. Sibly
Affiliation:
University of Reading
J. Hone
Affiliation:
University of Canberra
T. H. Clutton-Brock
Affiliation:
University of Cambridge
Get access

Summary

Introduction

Recent increases in the number of time-series long enough to provide an adequate description of population fluctuations clearly show that population stability varies widely among animals with similar longevities and rates of reproduction, as well as between species with contrasting life histories (Caughley & Krebs 1983; Gaillard et al. 2000). For example, among grazing ungulates, populations may either show little variation in size across years, irregular oscillations, semi-regular oscillations resembling the stable limit cycles found in some smaller mammals or dramatic oscillations occasionally leading to extinction (Peterson et al. 1984; Fowler 1987b; Coulson et al. 2000). While many ecological differences probably contribute to these differences (including predation, disease and human interference), the fact that stability varies widely among naturally regulated ungulate populations living in environments where human intervention is minimal and predators are absent (Boyd 1981a,b; Boussès et al. 1991; Clutton-Brock et al. 1997a), suggests that variation in population dynamics may often be caused by interactions between populations and their food supplies.

Theoreticians have explored the possibility that contrasts in population dynamics may be consistently related to differences in life histories or in the temporal or spatial distribution of resources (e.g. Peterson et al. 1984; Sinclair 1989; Sæther 1997; Illius & Gordon 2000; Owen-Smith 2002). While it is likely that both these differences may contribute to variation in dynamics, attempts to explain observed variation mostly assume that the causes of contrasts are sufficiently simple to be explained by general models derived from first principles (Caughley 1977).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×