Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-7vt9j Total loading time: 0 Render date: 2024-04-30T08:14:38.022Z Has data issue: false hasContentIssue false

PREFACE

Published online by Cambridge University Press:  05 May 2010

Jasprit Singh
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Semiconductor-based devices such, as transistors and diodes enabled technologies that have ushered in the information age. Computation, communication, storage, and display have all been impacted by semiconductors. The importance of semiconductors is recognized if we examine the number of undergraduate and graduate courses that cater to the physics and devices based on these materials. In nearly all electrical engineering departments there are one to two undergraduate courses on the general topic of “physics of semiconductor devices.” There are similarly two to three courses in graduate programs on semiconductor physics and devices. In many materials science departments and in physics (or applied physics) departments there are one or two courses where the focus is on semiconductors.

Semiconductors have achieved dominance in information technology because it is possible to rapidly alter their conductivity and optical properties. However, there are other materials that can also rightfully claim to be “smart.” New applications and needs are now making these other materials increasingly important. Devices that are usually called sensors or actuators are based on ceramics or insulators which have some properties that traditional semiconductors cannot match. Similarly, organic polymers can provide low-cost alternatives to traditional semiconductors in areas like image display, solar energy conversion, etc.

Increasingly we have to view intelligent devices as being made from a wide variety of materials – semiconductors, piezoelectric materials, pyroelectric materials, ferroelectrics, ferromagnetics, organic semiconductors, etc. Currently some electrical engineering departments and some materials science departments offer courses on “sensors and actuators” or “ceramics.” Some physics departments also offer courses on general “solid state physics,” which cover some aspects of ceramics.

Type
Chapter
Information
Smart Electronic Materials
Fundamentals and Applications
, pp. xi
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • PREFACE
  • Jasprit Singh, University of Michigan, Ann Arbor
  • Book: Smart Electronic Materials
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614439.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • PREFACE
  • Jasprit Singh, University of Michigan, Ann Arbor
  • Book: Smart Electronic Materials
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614439.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • PREFACE
  • Jasprit Singh, University of Michigan, Ann Arbor
  • Book: Smart Electronic Materials
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614439.001
Available formats
×