Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-04T15:03:49.319Z Has data issue: false hasContentIssue false

3 - Optical fibers

Published online by Cambridge University Press:  18 January 2010

Jia-ming Liu
Affiliation:
University of California, Los Angeles
Get access

Summary

An optical fiber is basically a cylindrical dielectric waveguide with a circular cross section where a high-index waveguiding core is surrounded by a low-index cladding. Optical fibers are usually made of silica (SiO2) glass. The index step and profile are controlled by the concentration and distribution of dopants. For example, the core can be doped with germania (GeO2) or alumina (Al2O3) or other oxides, such as P2O5 or TiO2, for a slightly higher index than that of a silica cladding. Alternatively, to take advantage of low-loss pure silica, the cladding can be doped with fluorine for a slightly lower index while the core contains undoped pure silica. Silica fibers are ideal for light transmission in the visible and near-infrared regions because of their low loss and low dispersion in these spectral regions. They are therefore suitable for optical communications and most laser applications in this range of the spectrum. Optical fibers made of other materials are also developed for special applications. For example, low-cost plastic fibers can be used for short-distance interconnections between personal computers and printers in offices. Fibers composed of ZrF4, BaF2, AlF3, LiF3, and other fluorides have a low loss in the range of 2–4 μm in the mid infrared. They can be used for mid-infrared optical communication or medical applications. Fibers for other spectral regions, such as the 10-μm region of CO2 laser wavelengths, are also developed.

Optical fibers have a wide range of applications. Owing to their low losses and large bandwidths, their most important applications are fiber-optic communications and interconnections. Other important applications include fiber sensors, guided optical imaging, remote monitoring, and medical applications.

Type
Chapter
Information
Photonic Devices , pp. 119 - 163
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Optical fibers
  • Jia-ming Liu, University of California, Los Angeles
  • Book: Photonic Devices
  • Online publication: 18 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614255.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Optical fibers
  • Jia-ming Liu, University of California, Los Angeles
  • Book: Photonic Devices
  • Online publication: 18 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614255.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Optical fibers
  • Jia-ming Liu, University of California, Los Angeles
  • Book: Photonic Devices
  • Online publication: 18 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614255.004
Available formats
×