Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-23T12:16:22.963Z Has data issue: false hasContentIssue false

6 - Least Action

Published online by Cambridge University Press:  20 January 2010

John C. Taylor
Affiliation:
University of Cambridge
Get access

Summary

What This Chapter Is About

The titles of most of the chapters in this book convey, I hope, something to the reader. The title of this chapter is an exception. The idea that there is a quantity called action, which takes its least value when the equations of motion are obeyed, is now one of the foundations of classical (as opposed to quantum) physics, and even in quantum physics the action is a basic quantity. This idea is not easily expressed in everyday terms, but I think I would be guilty of some sort of distortion if I omitted it from this book. So what is it all about?

In Section 4.4, I explained Fermat's principle of least time as applied to light rays. The principle says that the path taken by a light ray between two given points is such as to make the time taken by the light a minimum. The principle of least action is an extension of this sort of idea to the motion of particles or to any other timevarying system, like the electromagnetic field. The difference from the case of light is that it is now not just the time that is a minimum, but some less obvious quantity, called action. One needs some rule to decide what the action is for a given system. This rule, indirectly, defines the forces operating in the system.

I will use the word least throughout, but as I will explain in Section 6.3, this is not quite accurate. In some cases, we need a property a little more general than being least (i.e., minimum), that is, the property of being stationary.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Least Action
  • John C. Taylor, University of Cambridge
  • Book: Hidden Unity in Nature's Laws
  • Online publication: 20 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511612664.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Least Action
  • John C. Taylor, University of Cambridge
  • Book: Hidden Unity in Nature's Laws
  • Online publication: 20 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511612664.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Least Action
  • John C. Taylor, University of Cambridge
  • Book: Hidden Unity in Nature's Laws
  • Online publication: 20 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511612664.007
Available formats
×