Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T15:11:13.132Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  13 November 2009

C. Patrick Doncaster
Affiliation:
University of Southampton
Andrew J. H. Davey
Affiliation:
UK Water Research Centre (WRc)
Get access

Summary

Hypothesis testing in the life sciences often involves comparing samples of observations, and analysis of variance is a core technique for analysing such information. Parametric analysis of variance, abbreviated as ‘ANOVA’, encompasses a generic methodology for identifying sources of variation in continuous data, from the simplest test of trend in a single sample, or difference between two samples, to complex tests of multiple interacting effects. Whilst simple one-factor models may suffice for closely controlled experiments, the inherent complexities of the natural world mean that rigorous tests of causality often require more sophisticated multi-factor models. In many cases, the same hypothesis can be tested using several different experimental designs, and alternative designs must be evaluated to select a robust and efficient model. Textbooks on statistics are available to explain the principles of ANOVA and statistics packages will compute the analyses. The purpose of this book is to bridge between the texts and the packages by presenting a comprehensive selection of ANOVA models, emphasising the strengths and weaknesses of each and allowing readers to compare between alternatives.

Our motivation for writing the book comes from a desire for a more systematic comparison than is available in textbooks, and a more considered framework for constructing tests than is possible with generic software. The obvious utility of computer packages for automating otherwise cumbersome analyses has a downside in their uncritical production of results. Packages adopt default options until instructed otherwise, which will not suit all types of data.

Type
Chapter
Information
Analysis of Variance and Covariance
How to Choose and Construct Models for the Life Sciences
, pp. ix - xiv
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×