Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-21T05:33:32.878Z Has data issue: false hasContentIssue false

11 - Evaluation of Software Dependability

Published online by Cambridge University Press:  10 December 2009

Ian Wand
Affiliation:
University of York
Robin Milner
Affiliation:
University of Cambridge
Get access

Summary

On Disparity, Difficulty, Complexity, Novelty – and Inherent Uncertainty

It has been said that the term software engineering is an aspiration not a description. We would like to be able to claim that we engineer software, in the same sense that we engineer an aero-engine, but most of us would agree that this is not currently an accurate description of our activities. My suspicion is that it never will be.

From the point of view of this essay – i.e. dependability evaluation – a major difference between software and other engineering artefacts is that the former is pure design. Its unreliability is always the result of design faults, which in turn arise as a result of human intellectual failures. The unreliability of hardware systems, on the other hand, has tended until recently to be dominated by random physical failures of components – the consequences of the ‘perversity of nature’. Reliability theories have been developed over the years which have successfully allowed systems to be built to high reliability requirements, and the final system reliability to be evaluated accurately. Even for pure hardware systems, without software, however, the very success of these theories has more recently highlighted the importance of design faults in determining the overall reliability of the final product. The conventional hardware reliability theory does not address this problem at all.

In the case of software, there is no physical source of failures, and so none of the reliability theory developed for hardware is relevant. We need new theories that will allow us to achieve required dependability levels, and to evaluate the actual dependability that has been achieved, when the sources of the faults that ultimately result in failure are human intellectual failures.

Type
Chapter
Information
Computing Tomorrow
Future Research Directions in Computer Science
, pp. 198 - 216
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×