Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T20:51:31.904Z Has data issue: false hasContentIssue false

9 - TGF-β, Notch, and Wnt in normal and malignant stem cells: differentiating agents and epigenetic modulation

from SECTION III - TARGETING CANCER STEM CELL PATHWAYS

Published online by Cambridge University Press:  15 December 2009

Robert Glazer
Affiliation:
Lombardi Comprehensive Cancer Center, Georgetown University
Get access

Summary

The notion that the growth and so-called aberrant differentiation of many tumors depend on the existence of a small population of cancer stem cells in much the same way that organogenesis and tissue replacement depend on normal stem cells is at the heart of contemporary investigations of neoplastic diseases. Not surprisingly, the same genetic and signaling pathways that are involved in normal stem cell renewal and specification are also important in tumorigenesis. These pathways include the Wnt/β-catenin, Notch, and TGF-β signaling systems, all of which have been reviewed recently. In this chapter, we will highlight areas that are either developing or have not been covered extensively in other reviews. For example, recent studies have highlighted a role for the RNA binding protein Musashi 1 (Msi1) in the regulation of normal and cancer stem cells through the Wnt and Notch pathways.

Notch and Wnt signaling also regulate and are regulated by asymmetric cell division, a defining stem cell characteristic that has received little attention in the cancer stem cell literature. Asymmetric cell division, which results in the segregation of damaged proteins into only one of the daughter cells, has also recently been linked to stem cell aging, a process that clearly differs between normal and cancer stem cells. The ability of carcinoma cells to take on characteristics typical of cells from quite different backgrounds is well established and almost certainly related to a pluripotent stem cell–like origin.

Type
Chapter
Information
Cancer Stem Cells , pp. 139 - 162
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kitisin, K., Saha, T., Blake, T., Golestaneh, N., Deng, M., Kim, C., Tang, Y., Shetty, K., Mishra, B., and Mishra, L. (2007). Tgf-β signaling in development. Sci STKE 2007, (399):cm1. Review.Google ScholarPubMed
Mishra, L., Shetty, K., Tang, Y., Stuart, A., and Byers, S.W. (2005). The role of TGF-β and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24, 5775–5789.CrossRefGoogle ScholarPubMed
Fodde, R., and Brabletz, T. (2007). Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19, 150–158.CrossRefGoogle ScholarPubMed
Chiba, S. (2006). Notch signaling in stem cell systems. Stem Cells 24, 2437–2447.CrossRefGoogle ScholarPubMed
Watt, F.M., Estrach, S., and Ambler, C.A. (2008). Epidermal Notch signalling: differentiation, cancer and adhesion. Curr Opin Cell Biol 20, 171–179.CrossRefGoogle ScholarPubMed
Glazer, R.I., Wang, X.Y., Yuan, H., and Yin, Y. (2008). Musashi1: a stem cell marker no longer in search of a function. Cell Cycle 7, 2635–2639.CrossRefGoogle ScholarPubMed
Wang, X.Y., Yin, Y., Yuan, H., Sakamaki, T., Okano, H., and Glazer, R.I. (2008). Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol Cell Biol 28, 3589–3599.CrossRefGoogle ScholarPubMed
Green, J.L., Inoue, T., and Sternberg, P.W. (2008). Opposing Wnt pathways orient cell polarity during organogenesis. Cell 134, 646–656.CrossRefGoogle ScholarPubMed
Gonczy, P. (2008). Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9, 355–366. Quote from p. 355.CrossRefGoogle Scholar
Borgne, R., and Schweisguth, F. (2003). Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev Cell 5, 139–148.CrossRefGoogle ScholarPubMed
Birchmeier, C., Birchmeier, W., and Brand-Saberi, B. (1996). Epithelial-mesenchymal transitions in cancer progression. Acta Anat (Basel) 156, 217–226.CrossRefGoogle ScholarPubMed
Sommers, C.L., Thompson, E.W., Torri, J.A., Kemler, R., Gelmann, E.P., and Byers, S.W. (1991). Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities. Cell Growth Differ 2, 365–372.Google ScholarPubMed
Endo, Y., Deonauth, K., Prahalad, P., Hoxter, B., Zhu, Y., and Byers, S.W. (2008). Role of Sox-9, ER81 and VE-cadherin in retinoic acid-mediated trans-differentiation of breast cancer cells. PLoS ONE 3, e2714.CrossRefGoogle ScholarPubMed
Hendrix, M.J., Seftor, E.A., Kirschmann, D.A., and Seftor, R.E. (2000). Molecular biology of breast cancer metastasis: molecular expression of vascular markers by aggressive breast cancer cells. Breast Cancer Res 2, 417–422.CrossRefGoogle ScholarPubMed
Hendrix, M.J., Seftor, E.A., Hess, A.R., and Seftor, R.E. (2003). Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3, 411–421.CrossRefGoogle ScholarPubMed
Maniotis, A.J., Folberg, R., Hess, A., Seftor, E.A., Gardner, L.M., Pe'er, J., Trent, J.M., Meltzer, P.S., and Hendrix, M.J. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155, 739–752.CrossRefGoogle ScholarPubMed
Orford, K., Kharchenko, P., Lai, W., Dao, M.C., Worhunsky, D.J., Ferro, A., Janzen, V., Park, P.J., and Scadden, D.T. (2008). Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev Cell 14, 798–809.CrossRefGoogle ScholarPubMed
Attisano, L., and Wrana, J.L. (2002). Signal transduction by the TGF-β superfamily. Science 296, 1646–1647.CrossRefGoogle ScholarPubMed
Letamendia, A., Labbe, E., and Attisano, L. (2001). Transcriptional regulation by Smads: crosstalk between the TGF-β and Wnt pathways. J Bone Joint Surg Am 83A(Suppl 1), 31–39.Google Scholar
Zavadil, J., Cermak, L., Soto-Nieves, N., and Bottinger, E.P. (2004). Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23, 1155–1165.CrossRefGoogle ScholarPubMed
Nawshad, A., and Hay, E.D. (2003). TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. J Cell Biol 163, 1291–1301.CrossRefGoogle ScholarPubMed
Kim, K., Lu, Z., and Hay, E.D. (2002). Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26, 463–476.CrossRefGoogle ScholarPubMed
Munoz-Sanjuan, I., and Brivanlou, A.H. (2002). Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3, 271–280.CrossRefGoogle ScholarPubMed
Temple, S. (2001). The development of neural stem cells. Nature 414, 112–117.CrossRefGoogle ScholarPubMed
Ying, Q.L., Nichols, J., Chambers, I., and Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292.CrossRefGoogle ScholarPubMed
Fogarty, M.P., Kessler, J.D., and Wechsler-Reya, R.J. (2005). Morphing into cancer: the role of developmental signaling pathways in brain tumor formation. J Neurobiol 64, 458–475.CrossRefGoogle ScholarPubMed
Graham, A., Francis-West, P., Brickell, P., and Lumsden, A. (1994). The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372, 684–686.CrossRefGoogle ScholarPubMed
Kleber, M., Lee, H.Y., Wurdak, H., Buchstaller, J., Riccomagno, M.M., Ittner, L.M., Suter, U., Epstein, D.J., and Sommer, L. (2005). Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. J Cell Biol 169, 309–320.CrossRefGoogle ScholarPubMed
Parisi, S., D'Andrea, D., Lago, C.T., Adamson, E.D., Persico, M.G., and Minchiotti, G. (2003). Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells. J Cell Biol 163, 303–314.CrossRefGoogle ScholarPubMed
Strizzi, L., Bianco, C., Normanno, N., and Salomon, D. (2005). Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene 24, 5731–5741.CrossRefGoogle ScholarPubMed
Stern, C.D. (2005). Neural induction: old problem, new findings, yet more questions. Development 132, 2007–2021.CrossRefGoogle ScholarPubMed
Tropepe, V., Hitoshi, S., Sirard, C., Mak, T.W., Rossant, J., and Kooy, D. (2001). Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78.CrossRefGoogle ScholarPubMed
Gangemi, R.M., Perera, M., and Corte, G. (2004). Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells. J Neurochem 89, 286–306.CrossRefGoogle ScholarPubMed
Tang, Y., Katuri, V., Dillner, A., Mishra, B., Deng, C.X., and Mishra, L. (2003). Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Science 299, 574–577.CrossRefGoogle ScholarPubMed
Zhou, Y.X., Zhao, M., Li, D., Shimazu, K., Sakata, K., Deng, C.X., and Lu, B. (2003). Cerebellar deficits and hyperactivity in mice lacking Smad4. J Biol Chem 278, 42313–42320.CrossRefGoogle ScholarPubMed
Jennings, M.T., and Pietenpol, J.A. (1998). The role of transforming growth factor beta in glioma progression. J Neurooncol 36, 123–140.CrossRefGoogle ScholarPubMed
Uhl, M., Aulwurm, S., Wischhusen, J., Weiler, M., Ma, J.Y., Almirez, R., Mangadu, R., Liu, Y.W., Platten, M., Herrlinger, U., Murphy, A., Wong, D.H., Wick, W., Higgins, L.S., and Weller, M. (2004). SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64, 7954–7961.CrossRefGoogle ScholarPubMed
Ruscetti, F.W., Akel, S., and Bartelmez, S.H. (2005). Autocrine transforming growth factor-beta regulation of hematopoiesis: many outcomes that depend on the context. Oncogene 24, 5751–5763.CrossRefGoogle ScholarPubMed
Scandura, J.M., Boccuni, P., Massague, J., and Nimer, S.D. (2004). Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci U S A 101, 15231–15236.CrossRefGoogle ScholarPubMed
Larsson, J., and Karlsson, S. (2005). The role of Smad signaling in hematopoiesis. Oncogene 24, 5676–5692.CrossRefGoogle ScholarPubMed
Park, C., Afrikanova, I., Chung, Y.S., Zhang, W.J., Arentson, E., Fong, G.G., Rosendahl, A., and Choi, K. (2004). A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 131, 2749–2762.CrossRefGoogle ScholarPubMed
Larsson, J., Goumans, M.J., Sjostrand, L.J., Rooijen, M.A., Ward, D., Leveen, P., Xu, X., Ten Dijke, P., Mummery, C.L., and Karlsson, S. (2001). Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J 20, 1663–1673.CrossRefGoogle ScholarPubMed
Liu, B., Sun, Y., Jiang, F., Zhang, S., Wu, Y., Lan, Y., Yang, X., and Mao, N. (2003). Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood 101, 124–133.CrossRefGoogle ScholarPubMed
Chadwick, K., Shojaei, F., Gallacher, L., and Bhatia, M. (2005). Smad7 alters cell fate decisions of human hematopoietic repopulating cells. Blood 105, 1905–1915.CrossRefGoogle ScholarPubMed
Chiba, S., Takeshita, K., Imai, Y., Kumano, K., Kurokawa, M., Masuda, S., Shimizu, K., Nakamura, S., Ruddle, F.H., and Hirai, H. (2003). Homeoprotein DLX-1 interacts with Smad4 and blocks a signaling pathway from activin A in hematopoietic cells. Proc Natl Acad Sci U S A 100, 15577–15582.CrossRefGoogle ScholarPubMed
Goumans, M.J., and Mummery, C. (2000). Functional analysis of the TGF-β receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44, 253–265.Google ScholarPubMed
Kulkarni, A.B., and Karlsson, S. (1997). Inflammation and TGF-β 1: lessons from the TGF-β 1 null mouse. Res Immunol 148, 453–456.CrossRefGoogle ScholarPubMed
Massague, J., Blain, S.W., and Lo, R.S. (2000). TGF-β signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309.CrossRefGoogle ScholarPubMed
Weinstein, M., Yang, X., and Deng, C. (2000). Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 11, 49–58.CrossRefGoogle ScholarPubMed
Dontu, G., Jackson, K.W., McNicholas, E., Kawamura, M.J., Abdallah, W.M., and Wicha, M.S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6, R605–R615.CrossRefGoogle ScholarPubMed
Takaku, K., Oshima, M., Miyoshi, H., Matsui, M., Seldin, M.F., and Taketo, M.M. (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656.CrossRefGoogle ScholarPubMed
Xu, J., Pope, S.D., Jazirehi, A.R., Attema, J.L., Papathanasiou, P., Watts, J.A., Zaret, K.S., Weissman, I.L., and Smale, S.T. (2007). Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc Natl Acad Sci U S A 104, 12377–12382.CrossRefGoogle ScholarPubMed
Tang, Y., Katuri, V., Srinivasan, R., Fogt, F., Redman, R., Anand, G., Said, A., Fishbein, T., Zasloff, M., Reddy, E.P., Mishra, B., and Mishra, L. (2005). Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res 65, 4228–4237.CrossRefGoogle ScholarPubMed
Monga, S.P., Tang, Y., Candotti, F., Rashid, A., Wildner, O., Mishra, B., Iqbal, S., and Mishra, L. (2001). Expansion of hepatic and hematopoietic stem cells utilizing mouse embryonic liver explants. Cell Transplant 10, 81–89.Google ScholarPubMed
Bhowmick, N.A., Chytil, A., Plieth, D., Gorska, A.E., Dumont, N., Shappell, S., Washington, M.K., Neilson, E.G., and Moses, H.L. (2004). TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851.CrossRefGoogle ScholarPubMed
Mishra, L., Tully, R.E., Monga, S.P., Yu, P., Cai, T., Makalowski, W., Mezey, E., Pavan, W.J., and Mishra, B. (1997). Praja1, a novel gene encoding a RING-H2 motif in mouse development. Oncogene 15, 2361–2368.CrossRefGoogle ScholarPubMed
Nusse, R. (2008). Wnt signaling and stem cell control. Cell Res 18, 523–527.CrossRefGoogle ScholarPubMed
Radtke, F., and Clevers, H. (2005). Self-renewal and cancer of the gut: two sides of a coin. Science 307, 1904–1909.CrossRefGoogle ScholarPubMed
Wetering, M., Sancho, E., Verweij, C., Lau, W., Oving, I., Hurlstone, A., Horn, K., Batlle, E., Coudreuse, D., Haramis, A.P., Tjon-Pon-Fong, M., Moerer, P., Born, M., Soete, G., Pals, S., Eilers, M., Medema, R., and Clevers, H. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250.CrossRefGoogle ScholarPubMed
Pinto, D., Gregorieff, A., Begthel, H., and Clevers, H. (2003). Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17, 1709–1713.CrossRefGoogle ScholarPubMed
Morin, P.J., Sparks, A.B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., and Kinzler, K.W. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790.CrossRefGoogle ScholarPubMed
Congdon, K.L., and Reya, T. (2008). Divide and conquer: how asymmetric division shapes cell fate in the hematopoietic system. Curr Opin Immunol 20, 302–307.CrossRefGoogle ScholarPubMed
Reya, T., and Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature 434, 843–850.CrossRefGoogle ScholarPubMed
Duncan, A.W., Rattis, F.M., DiMascio, L.N., Congdon, K.L., Pazianos, G., Zhao, C., Yoon, K., Cook, J.M., Willert, K., Gaiano, N., and Reya, T. (2005). Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6, 314–322.CrossRefGoogle ScholarPubMed
Rattis, F.M., Voermans, C., and Reya, T. (2004). Wnt signaling in the stem cell niche. Curr Opin Hematol 11, 88–94.CrossRefGoogle ScholarPubMed
Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., and Weissman, I.L. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414.CrossRefGoogle ScholarPubMed
Lu, D., Zhao, Y., Tawatao, R., Cottam, H.B., Sen, M., Leoni, L.M., Kipps, T.J., Corr, M., and Carson, D.A. (2004). Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 101, 3118–3123.CrossRefGoogle ScholarPubMed
McWhirter, J.R., Neuteboom, S.T., Wancewicz, E.V., Monia, B.P., Downing, J.R., and Murre, C. (1999). Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci U S A 96, 11464–11469.CrossRefGoogle ScholarPubMed
Jamieson, C.H., Ailles, L.E., Dylla, S.J., Muijtjens, M., Jones, C., Zehnder, J.L., Gotlib, J., Li, K., Manz, M.G., Keating, A., Sawyers, C.L., and Weissman, I.L. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351, 657–667.CrossRefGoogle ScholarPubMed
Imbert, A., Eelkema, R., Jordan, S., Feiner, H., and Cowin, P. (2001). Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol 153, 555–568.CrossRefGoogle ScholarPubMed
Tsukamoto, A.S., Grosschedl, R., Guzman, R.C., Parslow, T., and Varmus, H.E. (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625.CrossRefGoogle ScholarPubMed
Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., Rowlands, T., Egeblad, M., Cowin, P., Werb, Z., Tan, L.K., Rosen, J.M., and Varmus, H.E. (2003). Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100, 15853–15858.CrossRefGoogle ScholarPubMed
Liu, B.Y., McDermott, S.P., Khwaja, S.S., and Alexander, C.M. (2004). The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A 101, 4158–4163.CrossRefGoogle ScholarPubMed
Naylor, S., Smalley, M.J., Robertson, D., Gusterson, B.A., Edwards, P.A., and Dale, T.C. (2000). Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. J Cell Sci 113(Pt 12), 2129–2138.Google ScholarPubMed
Miyabayashi, T., Teo, J.L., Yamamoto, M., McMillan, M., Nguyen, C., and Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A 104, 5668–5673.CrossRefGoogle ScholarPubMed
Etheridge, S.L., Spencer, G.J., Heath, D.J., and Genever, P.G. (2004). Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22, 849–860.CrossRefGoogle ScholarPubMed
Trowbridge, J.J., Xenocostas, A., Moon, R.T., and Bhatia, M. (2006). Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 12, 89–98.CrossRefGoogle Scholar
Ding, S., Wu, T.Y., Brinker, A., Peters, E.C., Hur, W., Gray, N.S., and Schultz, P.G. (2003). Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci U S A 100, 7632–7637.CrossRefGoogle ScholarPubMed
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou, A.H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10, 55–63.CrossRefGoogle ScholarPubMed
Krupnik, V.E., Sharp, J.D., Jiang, C., Robison, K., Chickering, T.W., Amaravadi, L., Brown, D.E., Guyot, D., Mays, G., Leiby, K., Chang, B., Duong, T., Goodearl, A.D., Gearing, D.P., Sokol, S.Y., and McCarthy, S.A. (1999). Functional and structural diversity of the human Dickkopf gene family. Gene 238, 301–313.CrossRefGoogle ScholarPubMed
Mao, B., Wu, W., Li, Y., Hoppe, D., Stannek, P., Glinka, A., and Niehrs, C. (2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321–325.CrossRefGoogle ScholarPubMed
Niehrs, C. (2006). Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469–7481.CrossRefGoogle ScholarPubMed
Hoang, B.H., Kubo, T., Healey, J.H., Yang, R., Nathan, S.S., Kolb, E.A., Mazza, B., Meyers, P.A., and Gorlick, R. (2004). Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res 64, 2734–2739.CrossRefGoogle ScholarPubMed
Kawano, Y., Kitaoka, M., Hamada, Y., Walker, M.M., Waxman, J., and Kypta, R.M. (2006). Regulation of prostate cell growth and morphogenesis by Dickkopf-3. Oncogene 25, 6528–6537.CrossRefGoogle ScholarPubMed
Poser, I., Dominguez, D., Herreros, A.G., Varnai, A., Buettner, R., and Bosserhoff, A.K. (2001). Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 276, 24661–24666.CrossRefGoogle ScholarPubMed
Kuphal, S., Lodermeyer, S., Bataille, F., Schuierer, M., Hoang, B.H., and Bosserhoff, A.K. (2006). Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene 25, 5027–5036.CrossRefGoogle Scholar
Pitsouli, C., and Perrimon, N. (2008). Developmental biology: our fly cousins' gut. Nature 454, 592–593.CrossRefGoogle ScholarPubMed
Liu, S., Dontu, G., and Wicha, M.S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7, 86–95.CrossRefGoogle ScholarPubMed
Weng, A.P., and Aster, J.C. (2004). Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev 14, 48–54.CrossRefGoogle ScholarPubMed
Baron, M. (2003). An overview of the Notch signalling pathway. Semin Cell Dev Biol 14, 113–119.CrossRefGoogle ScholarPubMed
Wakamatsu, Y., Maynard, T.M., Jones, S.U., and Weston, J.A. (1999). NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23, 71–81.CrossRefGoogle ScholarPubMed
Okano, H., Imai, T., and Okabe, M. (2002). Musashi: a translational regulator of cell fate. J Cell Sci 115, 1355–1359.Google ScholarPubMed
Clarke, R.B., Anderson, E., Howell, A., and Potten, C.S. (2003). Regulation of human breast epithelial stem cells. Cell Prolif 36(Suppl 1), 45–58.CrossRefGoogle ScholarPubMed
Nishimura, S., Wakabayashi, N., Toyoda, K., Kashima, K., and Mitsufuji, S. (2003). Expression of Musashi-1 in human normal colon crypt cells: a possible stem cell marker of human colon epithelium. Dig Dis Sci 48, 1523–1529.CrossRefGoogle ScholarPubMed
Sakakibara, S., Imai, T., Hamaguchi, K., Okabe, M., Aruga, J., Nakajima, K., Yasutomi, D., Nagata, T., Kurihara, Y., Uesugi, S., Miyata, T., Ogawa, M., Mikoshiba, K., and Okano, H. (1996). Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev Biol 176, 230–242.CrossRefGoogle ScholarPubMed
Siddall, N.A., McLaughlin, E.A., Marriner, N.L., and Hime, G.R. (2006). The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proc Natl Acad Sci U S A 103, 8402–8407.CrossRefGoogle ScholarPubMed
Sugiyama-Nakagiri, Y., Akiyama, M., Shibata, S., Okano, H., and Shimizu, H. (2006). Expression of RNA-binding protein Musashi in hair follicle development and hair cycle progression. Am J Pathol 168, 80–92.CrossRefGoogle ScholarPubMed
McGill, M.A., and McGlade, C.J. (2003). Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 278, 23196–23203.CrossRefGoogle ScholarPubMed
Yokota, N., Mainprize, T.G., Taylor, M.D., Kohata, T., Loreto, M., Ueda, S., Dura, W., Grajkowska, W., Kuo, J.S., and Rutka, J.T. (2004). Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 23, 3444–3453.CrossRefGoogle ScholarPubMed
Nakamura, M., Okano, H., Blendy, J.A., and Montell, C. (1994). Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron 13, 67–81.CrossRefGoogle ScholarPubMed
Sakatani, T., Kaneda, A., Iacobuzio-Donahue, C.A., Carter, M.G., Boom, W.S., Okano, H., Ko, M.S., Ohlsson, R., Longo, D.L., and Feinberg, A.P. (2005). Loss of imprinting of IGF2 alters intestinal maturation and tumorigenesis in mice. Science 307, 1976–1978.CrossRefGoogle ScholarPubMed
Antic, D., and Keene, J.D. (1997). Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 61, 273–278.CrossRefGoogle ScholarPubMed
Okano, H.J., and Darnell, R.B. (1997). A hierarchy of Hu RNA binding proteins in developing and adult neurons. J Neurosci 17, 3024–3037.CrossRefGoogle ScholarPubMed
Ratti, A., Fallini, C., Cova, L., Fantozzi, R., Calzarossa, C., Zennaro, E., Pascale, A., Quattrone, A., and Silani, V. (2006). A role for the ELAV RNA-binding proteins in neural stem cells: stabilization of Msi1 mRNA. J Cell Sci 119, 1442–1452.CrossRefGoogle ScholarPubMed
Pascale, A., Amadio, M., Scapagnini, G., Lanni, C., Racchi, M., Provenzani, A., Govoni, S., Alkon, D.L., and Quattrone, A. (2005). Neuronal ELAV proteins enhance mRNA stability by a PKCalpha-dependent pathway. Proc Natl Acad Sci U S A 102, 12065–12070.CrossRefGoogle ScholarPubMed
Akamatsu, W., Fujihara, H., Mitsuhashi, T., Yano, M., Shibata, S., Hayakawa, Y., Okano, H.J., Sakakibara, S., Takano, H., Takano, T., Takahashi, T., Noda, T., and Okano, H. (2005). The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proc Natl Acad Sci U S A 102, 4625–4630.CrossRefGoogle ScholarPubMed
Szabo, A., Dalmau, J., Manley, G., Rosenfeld, M., Wong, E., Henson, J., Posner, J.B., and Furneaux, H.M. (1991). HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 67, 325–333.CrossRefGoogle ScholarPubMed
Imai, T., Tokunaga, A., Yoshida, T., Hashimoto, M., Mikoshiba, K., Weinmaster, G., Nakafuku, M., and Okano, H. (2001). The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 21, 3888–3900.CrossRefGoogle ScholarPubMed
Okabe, M., Imai, T., Kurusu, M., Hiromi, Y., and Okano, H. (2001). Translational repression determines a neuronal potential in Drosophila asymmetric cell division. Nature 411, 94–98.CrossRefGoogle ScholarPubMed
Baonza, A., Murawsky, C.M., Travers, A.A., and Freeman, M. (2002). Pointed and Tramtrack69 establish an EGFR-dependent transcriptional switch to regulate mitosis. Nat Cell Biol 4, 976–980.CrossRefGoogle ScholarPubMed
Battelli, C., Nikopoulos, G.N., Mitchell, J.G., and Verdi, J.M. (2006). The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Mol Cell Neurosci 31, 85–96.CrossRefGoogle ScholarPubMed
Li, F., Ackermann, E.J., Bennett, C.F., Rothermel, A.L., Plescia, J., Tognin, S., Villa, A., Marchisio, P.C., and Altieri, D.C. (1999). Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1, 461–466.CrossRefGoogle ScholarPubMed
Devgan, V., Nguyen, B.C., Oh, H., and Dotto, G.P. (2006). p21WAF1/Cip1 suppresses keratinocyte differentiation independently of the cell cycle through transcriptional up-regulation of the IGF-I gene. J Biol Chem 281, 30463–30470.CrossRefGoogle ScholarPubMed
Kaplan, D.D., Meigs, T.E., Kelly, P., and Casey, P.J. (2004). Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem 279, 10829–10832.CrossRefGoogle ScholarPubMed
Okano, H., Kawahara, H., Toriya, M., Nakao, K., Shibata, S., and Imai, T. (2005). Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306, 349–356.CrossRefGoogle ScholarPubMed
Ayyanan, A., Civenni, G., Ciarloni, L., Morel, C., Mueller, N., Lefort, K., Mandinova, A., Raffoul, W., Fiche, M., Dotto, G.P., and Brisken, C. (2006). Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci U S A 103, 3799–3804.CrossRefGoogle ScholarPubMed
Reedijk, M., Odorcic, S., Chang, L., Zhang, H., Miller, N., McCready, D.R., Lockwood, G., and Egan, S.E. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65, 8530–8537.CrossRefGoogle ScholarPubMed
Stylianou, S., Clarke, R.B., and Brennan, K. (2006). Aberrant activation of Notch signaling in human breast cancer. Cancer Res 66, 1517–1525.CrossRefGoogle ScholarPubMed
Pece, S., Serresi, M., Santolini, E., Capra, M., Hulleman, E., Galimberti, V., Zurrida, S., Maisonneuve, P., Viale, G., and Di Fiore, P.P. (2004). Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167, 215–221.CrossRefGoogle ScholarPubMed
Hu, C., Dievart, A., Lupien, M., Calvo, E., Tremblay, G., and Jolicoeur, P. (2006). Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 168, 973–990.CrossRefGoogle ScholarPubMed
Jhappan, C., Gallahan, D., Stahle, C., Chu, E., Smith, G.H., Merlino, G., and Callahan, R. (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 6, 345–355.CrossRefGoogle ScholarPubMed
Fitzgerald, K., Harrington, A., and Leder, P. (2000). Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 19, 4191–4198.CrossRefGoogle ScholarPubMed
Gonsalves, F.C., and Weisblat, D.A. (2007). MAPK regulation of maternal and zygotic Notch transcript stability in early development. Proc Natl Acad Sci U S A 104, 531–536.CrossRefGoogle ScholarPubMed
Stockhausen, M.T., Sjolund, J., and Axelson, H. (2005). Regulation of the Notch target gene Hes-1 by TGFalpha induced Ras/MAPK signaling in human neuroblastoma cells. Exp Cell Res 310, 218–228.CrossRefGoogle ScholarPubMed
Klinakis, A., Szabolcs, M., Politi, K., Kiaris, H., Artavanis-Tsakonas, S., and Efstratiadis, A. (2006). Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci U S A 103, 9262–9267.CrossRefGoogle Scholar
Kiaris, H., Politi, K., Grimm, L.M., Szabolcs, M., Fisher, P., Efstratiadis, A., and Artavanis-Tsakonas, S. (2004). Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol 165, 695–705.CrossRefGoogle ScholarPubMed
Dontu, G., Abdallah, W.M., Foley, J.M., Jackson, K.W., Clarke, M.F., Kawamura, M.J., and Wicha, M.S. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17, 1253–1270.CrossRefGoogle ScholarPubMed
Smith, G.H., Sharp, R., Kordon, E.C., Jhappan, C., and Merlino, G. (1995). Transforming growth factor-alpha promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells. Am J Pathol 147, 1081–1096.Google ScholarPubMed
Clarke, R.B., Spence, K., Anderson, E., Howell, A., Okano, H., and Potten, C.S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277, 443–456.CrossRefGoogle ScholarPubMed
Clarke, R.B. (2005). Isolation and characterization of human mammary stem cells. Cell Prolif 38, 375–386.CrossRefGoogle ScholarPubMed
Mizumoto, K., and Sawa, H. (2007). Two betas or not two betas: regulation of asymmetric division by beta-catenin. Trends Cell Biol 17, 465–473.CrossRefGoogle ScholarPubMed
Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H.R., Zhang, Y., and Wrana, J.L. (2005). Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307, 1603–1609.CrossRefGoogle ScholarPubMed
Bose, R., and Wrana, J.L. (2006). Regulation of Par6 by extracellular signals. Curr Opin Cell Biol 18, 206–212.CrossRefGoogle ScholarPubMed
Perez-Moreno, M., Jamora, C., and Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548.CrossRefGoogle ScholarPubMed
Meshorer, E., and Gruenbaum, Y. (2008). Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging. J Cell Biol 181, 9–13.CrossRefGoogle ScholarPubMed
Brack, A.S., Conboy, M.J., Roy, S., Lee, M., Kuo, C.J., Keller, C., and Rando, T.A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810.CrossRefGoogle ScholarPubMed
Liu, H., Fergusson, M.M., Castilho, R.M., Liu, J., Cao, L., Chen, J., Malide, D., Rovira, I.I., Schimel, D., Kuo, C.J., Gutkind, J.S., Hwang, P.M., and Finkel, T. (2007). Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317, 803–806.CrossRefGoogle Scholar
Scaffidi, P., and Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063.CrossRefGoogle ScholarPubMed
Cao, K., Capell, B.C., Erdos, M.R., Djabali, K., and Collins, F.S. (2007). A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci U S A 104, 4949–4954.CrossRefGoogle ScholarPubMed
Liang, Y., and Zant, G. (2008). Aging stem cells, latexin, and longevity. Exp Cell Res 314, 1962–1972.CrossRefGoogle ScholarPubMed
Oakley, E.J., and Zant, G. (2007). Unraveling the complex regulation of stem cells: implications for aging and cancer. Leukemia21, 612–621.CrossRefGoogle ScholarPubMed
Shcheprova, Z., Baldi, S., Frei, S.B., Gonnet, G., and Barral, Y. (2008). A mechanism for asymmetric segregation of age during yeast budding. Nature 454, 728–734.CrossRefGoogle ScholarPubMed
Fuentealba, L.C., Eivers, E., Geissert, D., Taelman, V., and Robertis, E.M. (2008). Asymmetric mitosis: unequal segregation of proteins destined for degradation. Proc Natl Acad Sci U S A 105, 7732–7737.CrossRefGoogle ScholarPubMed
Coumailleau, F., and Gonzalez-Gaitan, M. (2008). From endocytosis to tumors through asymmetric cell division of stem cells. Curr Opin Cell Biol 20, 462–469.CrossRefGoogle ScholarPubMed
Erik Rusten, T.E., Filimonenko, M., Rodahl, L.M., Stenmark, H., and Simonsen, A. (2008). ESCRTing autophagic clearance of aggregating proteins. Autophagy 4, 233–236.CrossRefGoogle Scholar
Rusten, T.E., and Simonsen, A. (2008). ESCRT functions in autophagy and associated disease. Cell Cycle 7, 1166–1172.CrossRefGoogle ScholarPubMed
Moberg, K.H., Schelble, S., Burdick, S.K., and Hariharan, I.K. (2005). Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell 9, 699–710.CrossRefGoogle ScholarPubMed
Carlton, J.G., and Martin-Serrano, J. (2007). Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912.CrossRefGoogle ScholarPubMed
Carlton, J.G., Agromayor, M., and Martin-Serrano, J. (2008). Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc Natl Acad Sci U S A 105, 10541–10546.CrossRefGoogle ScholarPubMed
Easwaran, V., Pishvaian, M., Salimuddin, , and Byers, S. (1999). Cross-regulation of beta-catenin-LEF/TCF and retinoid signaling pathways. Curr Biol 9, 1415–1418.CrossRefGoogle ScholarPubMed
Palmer, H.G., Gonzalez-Sancho, J.M., Espada, J., Berciano, M.T., Puig, I., Baulida, J., Quintanilla, M., Cano, A., Herreros, A.G., Lafarga, M., and Munoz, A. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 154, 369–387.CrossRefGoogle ScholarPubMed
Shah, S., Hecht, A., Pestell, R., and Byers, S.W. (2003). Trans-repression of beta-catenin activity by nuclear receptors. J Biol Chem 278, 48137–48145.CrossRefGoogle ScholarPubMed
Shah, S., Islam, M.N., Dakshanamurthy, S., Rizvi, I., Rao, M., Herrell, R., Zinser, G., Valrance, M., Aranda, A., Moras, D., Norman, A., Welsh, J., and Byers, S.W. (2006). The molecular basis of vitamin D receptor and beta-catenin crossregulation. Mol Cell 21, 799–809.CrossRefGoogle ScholarPubMed
Nowak, J.A., Polak, L., Pasolli, H.A., and Fuchs, E. (2008). Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43.CrossRefGoogle ScholarPubMed
Cirillo, L.A., and Zaret, K.S. (2007). Specific interactions of the wing domains of FOXA1 transcription factor with DNA. J Mol Biol 366, 720–724.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×