Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-05T02:04:59.258Z Has data issue: false hasContentIssue false

Numerical Magnetohydrodynamic Studies of Turbulence and Star Formation

Published online by Cambridge University Press:  04 August 2010

D. S. Balsara
Affiliation:
N.C.S.A., University of Illinois at Urbana-Champaign, Illinois, U.S.A.
A. Pouquet
Affiliation:
Observatoire de la Cote d'Azur, France
D. Ward Thompson
Affiliation:
Royal Observatory, Blackford Hill, Edinburgh, U.K.
R. M. Crutcher
Affiliation:
N.C.S.A., University of Illinois at Urbana-Champaign, Illinois, U.S.A.
Jose Franco
Affiliation:
Universidad Nacional Autónoma de México
Alberto Carraminana
Affiliation:
Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Mexico
Get access

Summary

In this paper we examine two problems numerically. The first problem concerns the structure and evolution of MHD turbulence. Simulations are presented which show evidence of forming a turbulent cascade leading to a self-similar phase and eventually a decay phase. Several dynamical diagnostics of interest are tracked. Spectra for the kinetic and magnetic energies are presented. The second problem consists of the formation of pre-protostellar cores in a turbulent, magnetized molecular clouds. It is shown that the magnetic field strength correlates positively with the density in keeping with observations. It is also shown that the density and magnetic fields organize themselves into filamentary structures. Through the construction of simulated channel maps it is shown that accretion onto the cores takes place along the filaments. Thus a new dynamical process is reported for accretion onto cores. We have used the first author's RIEMANN code for astrophysical fluid dynamics for all these calculations.

Introduction

The conference for which this paper is being written has been instrumental in opening the eyes of astronomers to the need for understanding turbulent processes in astrophysics. While several astrophysical environments where turbulent processes could be important were identified by numerous contributors in this conference, the pulsar scintillation measurements and the study of lines in molecular clouds provide two environments where the need for magnetohydrodynamic (MHD) turbulence is observationally well-founded. Since the MHD equations are highly non-linear analytical approaches sometimes prove to be of limited utility.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×