Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-02T18:11:04.400Z Has data issue: false hasContentIssue false

4 - Comparative water relations of tropical alpine plants

Published online by Cambridge University Press:  21 October 2009

Philip W. Rundel
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

In tropical alpine regions drought may be the most important seasonal factor in an environment that otherwise lacks significant seasonality (see Smith, Chapter 1). In many of these regions diurnal cycles of physiological drought associated with low soil temperatures may be superimposed on the seasonal changes in soil moisture. From studies of cold temperate zone plants, particularly conifers (Kaufmann 1975, 1977; Running & Reid 1980), it is known that even in soils near field capacity, water uptake by roots may be severely impaired by low soil temperatures (0–5 °C). This high root resistance to water uptake may extend through spring and into early summer in temperate zone coniferous forests with persistent snow cover. In arctic regions, physiological drought may extend throughout the entire summer if the roots are situated above a permafrost layer (Goldstein 1981).

In the tropical alpine zone, where snow cover is not persistent and permafrost does not exist, the potential for physiological drought is nevertheless present. The risk is especially great during the early morning hours when soil temperatures in the root zone are near freezing and potential transpiration is high due to high solar radiation loads. The simultaneous occurrence of low water availability in the absolute sense on a seasonal basis, and in the physiological sense on a diurnal basis, complicates the analysis of drought resistance mechanisms in tropical alpine plants. It also provides an excellent opportunity to study adaptations to drought along both altitudinal and geographical gradients of relative importance of diurnal versus seasonal drought.

Type
Chapter
Information
Tropical Alpine Environments
Plant Form and Function
, pp. 61 - 76
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×