Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T18:20:39.859Z Has data issue: false hasContentIssue false

5 - Molecular ecology and cell biology of Legionella pneumophila

Published online by Cambridge University Press:  21 August 2009

Maëlle Molmeret
Affiliation:
Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
Dina M. Bitar
Affiliation:
Department of Microbiology and Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Quds University, Jerusalem, 19356, Israel
Yousef Abu Kwaik
Affiliation:
Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0084, USA
Richard J. Lamont
Affiliation:
University of Florida
Get access

Summary

Legionella pneumophila, a Gram-negative bacillus that is ubiquitous in aquatic environments, is responsible for Legionnaires' disease. It is a facultative intracellular pathogen that can replicate within eukaryotic host cells such as protozoan and macrophages. In water, L. pneumophila grows within protozoan hosts. There are at least 13 species of amoebae and 2 species of ciliated protozoa that support intracellular replication of L. pneumophila (Fields, 1996). Among the most predominant amoebae in water sources are hartmannellae and acanthamoebae, which have also been isolated from water sources associated with Legionnaires' disease outbreaks (Fields, 1996). Interaction between L. pneumophila and protozoa is considered to be central to the pathogenesis and ecology of L. pneumophila (Rowbotham, 1986; Harb et al., 2000). In humans, L. pneumophila reaches the lungs after inhalation of contaminated aerosol droplets (Fields, 1996; Fliermans, 1996; also see Fig. 5.1). The main sources of contaminated water droplets are hot water and air-conditioning systems, but the bacteria have been isolated from fountains, spas, pools, dental and hospital units, and other man-made water systems (Fliermans, 1996; also see Fig. 5.1). No person-to-person transmission has been described. Once in the lungs, L. pneumophila are ingested in alveolar macrophages, the major site of bacterial replication. This results in an acute and severe pneumonia. In addition to Legionnaires' disease, L. pneumophila also causes Pontiac fever, which is a self-limiting flu-like illness that is not well understood but is not lethal. Approximately one half of the 48 species of Legionella have been associated with human disease.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu Kwaik, Y., Fields, B. S. and Engleberg, N. C. (1994). Protein expression by the protozoan Hartmannella vermiformis upon contact with its bacterial parasite Legionella pneumophila. Infect. Immun. 62, 1860–1866Google ScholarPubMed
Abu Kwaik, Y. (1996). The phagosome containing Legionella pneumophila within the protozoan Hartmanella vermiformis is surrounded by the rough endoplasmic reticulum. Appl. Environ. Microbiol. 62, 2022–2028Google ScholarPubMed
Abu Kwaik, Y., Gao, L.-Y., Harb, O. S. and Stone, B. J. (1997). Transcriptional regulation of the macrophage-induced gene (gspA) of Legionella pneumophila and phenotypic characterization of a null mutant. Mol. Microbiol. 24, 629–642CrossRefGoogle ScholarPubMed
Abu Kwaik, Y. (1998a). Induced expression of the Legionella pneumophila gene encoding a 20-kilodalton protein during intracellular infection. Infect. Immun. 66, 203–212Google Scholar
Abu Kwaik, Y. (1998b). Fatal attraction of mammalian cells to Legionella pneumophila. Mol. Microbiol. 30, 689–696CrossRefGoogle Scholar
Abu Kwaik, Y., Gao, L.-Y., Stone, B. J., Venkataraman, C. and Harb, O. S. (1998). Invasion of protozoa by Legionella pneumophila and its role in bacterial ecology and pathogenesis. Appl. Environ. Microbiol. 64, 3127–3133Google ScholarPubMed
Adeleke, A., Pruckler, J., Benson, R., Rowbotham, T., Halablab, M. and Fields, B. S. (1996). Legionella-like amoebal pathogens – phylogenetic status and possible role in respiratory disease. Emerg. Infect. Dis. 2, 225–229CrossRefGoogle Scholar
Alli, O. A. T., Gao, L.-Y., Pedersen, L. L., Zink, S., Radulic, M., Doric, M. and Abu Kwaik, Y. (2000). Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect. Immun. 68, 6431–6440CrossRefGoogle ScholarPubMed
Anderson, P. (1997). Kinase cascades regulating entry into apoptosis. Microbiol. Mol. Biol. Rev. 61, 33–46Google ScholarPubMed
Bachman, M. A. and Swanson, M. S. (2001). RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol. Microbiol. 40, 1201–1214CrossRefGoogle ScholarPubMed
Barker, J., Brown, M. R. W., Collier, P. J., Farrell, I. and Gilbert, P. (1992). Relationships between Legionella pneumophila and Acanthamoebae polyphaga: physiological status and susceptibility to chemical inactivation. Appl. Environ. Microbiol. 58, 2420–2425Google Scholar
Barker, J., Lambert, P. A. and Brown, M. R. W. (1993). Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila. Infect. Immun. 61, 3503–3510Google ScholarPubMed
Barker, J., Scaife, H. and Brown, M. R. W. (1995). Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila. Antimicrob. Agents Chemother. 39, 2684–2688CrossRefGoogle ScholarPubMed
Beckers, M. C., Yoshida, S., Morgan, K., Skamene, E. and Gros, P. (1995). Natural resistance to infection with Legionella pneumophila: chromosomal localization of the Lgn1 susceptibility gene. Mamm. Genome 6, 540–545CrossRefGoogle ScholarPubMed
Beckers, M. C., Ernst, E., Diez, E., Morissette, C., Gervais, F., Hunter, K., Housman, D., Yoshida, S., Skamene, E. and Gros, P. (1997). High-resolution linkage map of mouse chromosome 13 in the vicinity of the host resistance locus Lgn1. Genomics 39, 254–263CrossRefGoogle ScholarPubMed
Benin, A. L., Benson, R. F. and Besser, R. E. (2002). Trends in Legionnaires disease, 1980–1998: declining mortality and new patterns of diagnosis. Clin. Inf. Dis. 35, 1039–1046CrossRefGoogle ScholarPubMed
Berger, K. H. and Isberg, R. R. (1993). Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol. 7, 7–19CrossRefGoogle ScholarPubMed
Berger, K. H., Merriam, J. and Isberg, R. R. (1994). Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol. Microbiol. 14, 809–822CrossRefGoogle ScholarPubMed
Berk, S. G., Ting, R. S., Turner, G. W. and Ashburn, R. J. (1998). Production of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp. Appl. Environ. Microbiol. 64, 279–286Google ScholarPubMed
Birtles, R. J., Rowbotham, T. J., Raoult, D. and Harrison, T. G. (1996). Phylogenetic diversity of intra-amoebal legionellae as revealed by 16S rRNA gene sequence comparison. Microbiology 142, 3525–3530CrossRefGoogle ScholarPubMed
Biurrun, A., Caballero, L., Pelaz, C., Leon, E. and Gago, A. (1999). Treatment of a Legionella pneumophila-colonized water distribution system using copper-silver ionization and continuous chlorination. Infect. Control Hosp. Epidemiol. 20, 426–428CrossRefGoogle ScholarPubMed
Bozue, J. A. and Johnson, W. (1996). Interaction of Legionella pneumophila with Acanthamoeba catellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. Infect. Immun. 64, 668–673Google ScholarPubMed
Brieland, J., Freeman, P., Kunkel, R., Chrisp, C., Hurley, M., Fantone, J. and Engleberg, N. C. (1994). Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice: a murine model of human Legionnaires' disease. Am. J. Pathol. 145, 1537–1546Google ScholarPubMed
Brieland, J. K., Remick, D. G., Freeman, P. T., Hurley, M. C., Fantone, J. C. and Engleberg, N. C. (1995). In vivo regulation of replicative Legionella pneumophila lung infection by endogenous tumor necrosis factor alpha and nitric oxide. Infect. Immun. 63, 3253–3258Google ScholarPubMed
Brieland, J. K., Fantone, J. C., Remick, D. G., LeGendre, M., McClain, M. and Engleberg, N. C. (1997). The role of Legionella pneumophila-infected Hartmanella vermiformis as an infectious particle in a murine model of Legionnaires' disease. Infect. Immun. 65, 4892–4896Google Scholar
Byrd, T. F. and Horwitz, M. A. (1989). Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J. Clin. Invest. 83, 1457–1465CrossRefGoogle Scholar
Byrd, T. F. and Horwitz, M. A. (2000). Aberrantly low transferrin receptor expression on human monocytes is associated with nonpermissiveness for Legionella pneumophila growth. J. Infect. Dis. 181, 1394–1400CrossRefGoogle ScholarPubMed
Byrne, B. and Swanson, M. S. (1998). Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect. Immun. 66, 3029–3034Google ScholarPubMed
Cassatella, M. A. (1995). The production of cytokines by polymorphonuclear neutrophils. Immunol. Today 16, 21–26CrossRefGoogle ScholarPubMed
Christie, P. J. and Vogel, J. P. (2000). Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8, 354–360CrossRefGoogle ScholarPubMed
Cianciotto, N. P. and Fields, B. S. (1992). Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc. Natl. Acad. Sci. USA 89, 5188–5191CrossRefGoogle ScholarPubMed
Cirillo, J. D., Tompkins, L. S. and Falkow, S. (1994). Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect. Immun. 62, 3254–3261Google ScholarPubMed
Cirillo, J. D., Cirillo, S. L., Yan, L., Bermudez, L. E., Falkow, S. and Tompkins, L. S. (1999). Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infect. Immun. 67, 4427–4434Google ScholarPubMed
Cirillo, S. L., Lum, J. and Cirillo, J. D. (2000). Identification of novel loci involved in entry by Legionella pneumophila. Microbiology 146, 1345–1359CrossRefGoogle ScholarPubMed
Coers, J., Monahan, C. and Roy, C. R. (1999). Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nature Cell Biol. 1, 451–453CrossRefGoogle ScholarPubMed
Coers, J., Kagan, J. C., Matthews, M., Nagai, H., Zuckman, D. M. and Roy, C. R. (2000). Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol. Microbiol. 38, 719–736CrossRefGoogle ScholarPubMed
Cohen, J. J. (1993). Mechanisms of apoptosis. Immunol. Today 14, 126–130CrossRefGoogle Scholar
Deng, J. C., Tateda, K., Zeng, X. and Standiford, T. J. (2001). Transient transgenic expression of gamma interferon promotes Legionella pneumophila clearance in immunocompetent hosts. Infect. Immun. 69, 6382–6390CrossRefGoogle ScholarPubMed
Dietrich, W. F., Damron, D. M., Isberg, R. R., Lander, E. S. and Swanson, M. S. (1995). Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13. Genomics 26, 443–450CrossRefGoogle ScholarPubMed
Dorn, B. R., Dunn, W. A. Jr., and Progulske-Fox, A. (2002). Bacterial interactions with the autophagic pathway. Cell. Microbiol. 4, 1–10CrossRefGoogle ScholarPubMed
Dowling, J. N., Saha, A. K. and Glew, R. H. (1992). Virulence factors of the family Legionellaceae. Microbiol. Rev. 56, 32–60Google ScholarPubMed
Dumenil, G. and Isberg, R. R. (2001). The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Mol. Microbiol. 40, 1113–1127CrossRefGoogle ScholarPubMed
Elliott, J. A. and Winn, W. C. Jr. (1986). Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila. Infect. Immun. 51, 31–36Google ScholarPubMed
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50CrossRefGoogle ScholarPubMed
Fields, B. S., Nerad, T. A., Sawyer, T. K., King, C. H., Barbaree, J. M., Martin, W. T., Morrill, W. E. and Sanden, G. N. (1990). Characterization of an axenic strain of Hartmannella vermiformis obtained from an investigation of nosocomial legionellosis. J. Protozool. 37, 581–583CrossRefGoogle ScholarPubMed
Fields, B. S. (1996). The molecular ecology of legionellae. Trends. Microbiol. 4, 286–290CrossRefGoogle ScholarPubMed
Fields, B. S., Benson, R. F. and Besser, R. E. (2002). Legionella and Legionnaires' disease: 25 years of investigation. Clin. Microbiol. Rev. 15, 506–526CrossRefGoogle ScholarPubMed
Fliermans, C. B. (1996). Ecology of Legionella: from data to knowledge with a little wisdom. Microb. Ecol. 32, 203–228CrossRefGoogle ScholarPubMed
Gagnon, E., Duclos, S., Rondeau, C., Chevet, E., Cameron, P. H., Steele-Mortimer, O., Paiement, J., Bergeron, J. J. and Desjardins, M. (2002). Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131CrossRefGoogle ScholarPubMed
Gal-Mor, O., Zusman, T. and Segal, G. (2002). Analysis of DNA regulatory elements required for expression of the Legionella pneumophila icm and dot virulence genes. J. Bacteriol. 184, 3823–3833CrossRefGoogle ScholarPubMed
Gao, L.-Y., Harb, O. S. and Abu Kwaik, Y. (1997). Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant hosts, mammalian and protozoan cells. Infect. Immun. 65, 4738–4746Google Scholar
Gao, L.-Y., Harb, O. S. and Abu Kwaik, Y. (1998a). Identification of macrophage-specific infectivity loci (mil) of Legionella pneumophila that are not required for infectivity of protozoa. Infect. Immun. 66, 883–892Google Scholar
Gao, L.-Y., Stone, B. J., Brieland, J. K. and Abu Kwaik, Y. (1998b). Different fates of Legionella pneumophila pmi and mil mutants within human-derived macrophages and alveolar epithelial cells. Microb. Pathog. 25, 291–306CrossRefGoogle Scholar
Gao, L.-Y. and Abu Kwaik, Y. (1999a). Activation of caspase-3 in Legionella pneumophila-induced apoptosis in macrophages. Infect. Immun. 67, 4886–4894Google Scholar
Gao, L.-Y. and Abu Kwaik, Y. (1999b). Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. Infect. Immun. 67, 862–870Google Scholar
Gao, L.-Y., Susa, M., Ticac, B. and Abu Kwaik, Y. (1999). Heterogeneity in intracellular replication and cytopathogenicity of Legionella pneumophila and Legionella micdadei in mammalian and protozoan cells. Microb. Pathogen. 27, 273–287CrossRefGoogle ScholarPubMed
Gao, L.-Y. and Abu Kwaik, Y. (2000). The mechanism of killing and exiting the protozoan host Acanthamoeba polyphaga by Legionella pneumophila. Environ. Microbiol. 2, 79–90CrossRefGoogle ScholarPubMed
Gebran, S. J., Newton, C., Yamamoto, Y., Widen, R., Klein, T. W. and Friedman, H. (1994a). Macrophage permissiveness for Legionella pneumophila growth modulated by iron. Infect. Immun. 62, 564–568Google Scholar
Gebran, S. J., Yamamoto, Y., Newton, C., Klein, T. W. and Friedman, H. (1994b). Inhibition of Legionella pneumophila growth by gamma interferon in permissive A/J mouse macrophages: role of reactive oxygen species, nitric oxide, tryptophan, and iron(III). Infect. Immun. 62, 3197–3205Google Scholar
Gibson, F. C. III, Tzianabos, O. A. and Rodgers, F. G. (1993). Adherence of Legionella pneumophila to U-937 cells, guinea-pig alveolar macrophages, and MRC-5 cells by a novel, complement-independent binding mechanism. Can. J. Microbiol. 39, 718–722Google Scholar
Glavin, F. L., Winn, W. C. and Graighead, J. E. (1979). Ultrastructure of lung in Legionnaires' disease. Ann. Intern. Med. 90, 555–559CrossRefGoogle ScholarPubMed
Hagele, S., Hacker, J. and Brand, B. C. (1998). Legionella pneumophila kills human phagocytes but not protozoan host cells by inducing apoptotic cell death. FEMS Microbiol. Lett. 169, 51–58CrossRefGoogle Scholar
Hales, L. M. and Shuman, H. A. (1999). The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J. Bacteriol. 181, 4879–4889Google ScholarPubMed
Hammer, B. K. and Swanson, M. S. (1999). Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol. Microbiol. 33, 721–731CrossRefGoogle ScholarPubMed
Hammer, B. K., Tateda, E. S. and Swanson, M. S. (2002). A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol. Microbiol. 44, 107–118CrossRefGoogle ScholarPubMed
Harb, O. S., Venkataraman, C., Haack, B. J., Gao, L.-Y. and Abu Kwaik, Y. (1998). Heterogeneity in the attachment and uptake mechanisms of the Legionnaires' disease bacterium, Legionella pneumophila, by protozoan hosts. Appl. Environ. Microbiol. 64, 126–132Google ScholarPubMed
Harb, O. S., Gao, L.-Y. and Abu Kwaik, Y. (2000). From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ. Microbiol. 2, 251–265CrossRefGoogle ScholarPubMed
Heuner, K., Dietrich, C., Skriwan, C., Steinert, M. and Hacker, J. (2002). Influence of the alternative sigma(28) factor on virulence and flagellum expression of Legionella pneumophila. Infect. Immun. 70, 1604–1608CrossRefGoogle ScholarPubMed
Hilbi, H., Segal, G. and Shuman, H. A. (2001). Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol. Microbiol. 42, 603–617CrossRefGoogle ScholarPubMed
Horwitz, M. A. and Silverstein, S. C. (1980). Legionnaires' disease bacterium (Legionella pneumophila) multiplies intracellularly in human monocytes. J. Clin. Invest. 66, 441–450CrossRefGoogle Scholar
Horwitz, M. A. and Silverstein, S. C. (1981a). Interaction of the Legionnaires' disease bacterium (Legionella pneumophila) with human phagocytes. II. Antibody promotes binding of L. pneumophila to monocytes but does not inhibit intracellular multiplication. J. Exp. Med. 153, 398–406CrossRefGoogle Scholar
Horwitz, M. A. and Silverstein, S. C. (1981b). Interaction of the Legionnaires' disease bacterium (Legionella pneumophila) with human phagocytes. I. L. pneumophila resists killing by polymorphonuclear leukocytes, antibody, and complement. J. Exp. Med. 153, 386–397CrossRefGoogle Scholar
Horwitz, M. A. (1983a). The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J. Exp. Med. 158, 2108–2126CrossRefGoogle Scholar
Horwitz, M. A. (1983b). Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes. J. Exp. Med. 158, 1319–1331CrossRefGoogle Scholar
Horwitz, M. A. (1984). Phagocytosis of the Legionnaires' disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36, 27–33CrossRefGoogle ScholarPubMed
Horwitz, M. A. and Maxfield, F. R. (1984). Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J. Cell Biol. 99, 1936–1943CrossRefGoogle ScholarPubMed
Katz, S. M. and Hashemi, S. (1982). Electron microscopic examination of the inflammatory response to Legionella pneumophila in guinea pigs. Lab. Invest. 46, 24–32Google ScholarPubMed
Katz, S. M. and Hashemi, S. (1983). Electron microscopic examination of the inflammatory response of guinea pig neutrophils and macrophages to Legionella pneumophila. Adv. Exp. Med. Biol. 162, 327–333CrossRefGoogle ScholarPubMed
Kaufmann, S. H. E. (1993). Immunity to intracellular bacteria. Annu. Rev. Immunol. 11, 129–163CrossRefGoogle ScholarPubMed
King, C. H., Fields, B. S., Shotts, E. B. Jr., and White, E. H. (1991). Effects of cytochalasin D and methylamine on intracellular growth of Legionella pneumophila in amoebae and human monocyte-like cells. Infect. Immun. 59, 758–763Google ScholarPubMed
Kirby, J. E. and Isberg, R. R. (1998). Legionnaires' disease: the pore macrophage and the legion of terror within. Trends Microbiol. 6, 256–258CrossRefGoogle Scholar
Kirby, J. E., Vogel, J. P., Andrews, H. L. and Isberg, R. R. (1998). Evidence for pore-forming ability by Legionella pneumophila. Mol. Microbiol. 27, 323–336CrossRefGoogle ScholarPubMed
Komano, T., Yoshida, T., Narahara, K. and Furuya, N. (2000). The transfer region of IncI1 plasmid R64: similarities between R64 tra and legionella icm/dot genes. Mol. Microbiol. 35, 1348–1359CrossRefGoogle ScholarPubMed
Kool, J. L., Carpenter, J. C. and Fields, B. S. (1999). Effect of monochloramine disinfection of municipal drinking water on risk of nosocomial Legionnaires' disease. Lancet 353, 272–277CrossRefGoogle ScholarPubMed
Kusnetsov, J., Iivanainen, E., Elomaa, N., Zacheus, O. and Martikainen, P. J. (2001). Copper and silver ions more effective against legionellae than against mycobacteria in a hospital warm water system. Water Res. 35, 4217–4225CrossRefGoogle Scholar
Mann, B. J., Torian, B. E., Vedvick, T. S. and Petri, W. A. J. (1991). Sequence of a cysteine-rich galactose-specific lectin of Entamoeba histolytica. Proc. Natl. Acad. Sci. USA 88, 3248–3252CrossRefGoogle ScholarPubMed
Marrie, T. J., Raoult, D., Scola, B., Birtles, R. J. and Carolis, E. (2001). Legionella-like and other amoebal pathogens as agents of community-acquired pneumonia. Emerg. Infect. Dis. 7, 1026–1029CrossRefGoogle ScholarPubMed
Matthews, M. and Roy, C. R. (2000). Identification and subcellular localization of the Legionella pneumophila IcmX protein: a factor essential for establishment of a replicative organelle in eukaryotic host cells. Infect. Immun. 68, 3971–3982CrossRefGoogle ScholarPubMed
Molmeret, M. and Abu Kwaik, Y. (2002). How does Legionella pneumophila exit the host cell? Trends Microbiol. 10, 258–260CrossRefGoogle ScholarPubMed
Molmeret, M., Alli, O. A., Radulic, M., Susa, M., Doric, M. and Kwaik, Y. A. (2002a). The C-terminus of IcmT is essential for pore formation and for intracellular trafficking of Legionella pneumophila within Acanthamoeba polyphaga. Mol. Microbiol. 43, 1139–1150CrossRefGoogle Scholar
Molmeret, M., Alli, O. A., Zink, S., Flieger, A., Cianciotto, N. P. and Kwaik, Y. A. (2002b). icmT is essential for pore formation-mediated egress of Legionella pneumophila from mammalian and protozoan cells. Infect. Immun. 70, 69–78CrossRefGoogle Scholar
Muller, A., Hacker, J. and Brand, B. (1996). Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection. Infect. Immun. 64, 4900–4906Google ScholarPubMed
Muraca, P., Stout, J. E. and Yu, V. L. (1987). Comparative assessment of chlorine, heat, ozone, and UV light for killing Legionella pneumophila within a model plumbing system. Appl. Environ. Microbiol. 53, 447–453Google ScholarPubMed
Nagai, H. and Roy, C. R. (2001). The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 20, 5962–5970CrossRefGoogle ScholarPubMed
Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. and Roy, C. R. (2002). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682CrossRefGoogle ScholarPubMed
Nash, T. W., Libby, D. M. and Horwitz, M. A. (1984). Interaction between the Legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J. Clin. Invest. 74, 771–782CrossRefGoogle ScholarPubMed
Nash, T. W., Libby, D. M. and Horwitz, M. A. (1988). IFN-gamma-activated human alveolar macrophages inhibit the intracellular multiplication of Legionella pneumophila. J. Immunol. 140, 3978–3981Google ScholarPubMed
O'Brein, S. J. and Bhopal, R. S. (1993). Legionnaires' disease: the infective dose paradox. Lancet 342, 5–6CrossRefGoogle Scholar
Payne, N. R. and Horwitz, M. A. (1987). Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J. Exp. Med. 166, 1377–1389CrossRefGoogle ScholarPubMed
Rechnitzer, C. and Blom, J. (1989). Engulfment of the Philadelphia strain of Legionella pneumophila within pseudopod coils in human phagocytes. Comparison with the other Legionella strains and species. Acta Pathol. Microbiol. Immunol. Scand.[B] 97, 105–114CrossRefGoogle ScholarPubMed
Rodgers, F. G. and Gibson, F. C. III (1993). Opsonin-independent adherence and intracellular development of Legionella pneumophila within U-937 cells. Can. J. Microbiol. 39, 718–722CrossRefGoogle ScholarPubMed
Rowbotham, T. J. (1980). Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J. Clin. Pathol. 33, 1179–1183CrossRefGoogle ScholarPubMed
Rowbotham, T. J. (1986). Current views on the relationships between amoebae, legionellae and man. Isr. J. Med. Sci. 22, 678–689Google ScholarPubMed
Roy, C. R. and Isberg, R. R. (1997). Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages. Infect. Immun. 65, 571–578Google ScholarPubMed
Roy, C. R. and Tilney, L. G. (2002). The road less traveled: transport of Legionella to the endoplasmic reticulum. J. Cell Biol. 158, 415–419CrossRefGoogle ScholarPubMed
Segal, G., Purcell, M. and Shuman, H. A. (1998). Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila chromosome. Proc. Natl. Acad. Sci. USA 95, 1669–1674CrossRefGoogle Scholar
Segal, G. and Shuman, H. A. (1998). Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol. Microbiol. 30, 197–208CrossRefGoogle ScholarPubMed
Segal, G., Russo, J. J. and Shuman, H. A. (1999). Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol. Microbiol. 34, 799–809CrossRefGoogle ScholarPubMed
Segal, G. and Shuman, H. A. (1999). Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect. Immun. 67, 2117–2124Google ScholarPubMed
Solomon, J. M. and Isberg, R. R. (2000). Growth of Legionella pneumophila in Dictyostelium discoideum: a novel system for genetic analysis of host-pathogen interactions. Trends Microbiol. 8, 478–480CrossRefGoogle ScholarPubMed
Solomon, J. M., Rupper, A., Cardelli, J. A. and Isberg, R. R. (2000). Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect. Immun. 68, 2939–2947CrossRefGoogle ScholarPubMed
Steinert, M., Emody, L., Amann, R. and Hacker, J. (1997). Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 63, 2047–2053Google ScholarPubMed
Stone, B. J., Brier, A. and Kwaik, Y. A. (1999). The Legionella pneumophila prp locus; required during infection of macrophages and amoebae. Microb. Pathog. 27, 369–376CrossRefGoogle ScholarPubMed
Susa, M., Ticac, T., Rukavina, T., Doric, M. and Marre, R. (1998). Legionella pneumophila infection in intratracheally inoculated T cell depleted or non-depleted A/J mice. J. Immunol. 160, 316–321Google ScholarPubMed
Swanson, M. S. and Isberg, R. R. (1995a). Formation of the Legionella pneumophila replicative phagosome. Infect. Agents Dis. 2, 269–271Google Scholar
Swanson, M. S. and Isberg, R. R. (1995b). Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect. Immun. 63, 3609–3620Google Scholar
Tateda, K., Moore, T. A., Deng, J. C., Newstead, M. W., Zeng, X., Matsukawa, A., Swanson, M. S., Yamaguchi, K. and Standiford, T. J. (2001a). Early recruitment of neutrophils determines subsequent T1/T2 host responses in a murine model of Legionella pneumophila pneumonia. J. Immunol. 166, 3355–3361CrossRefGoogle Scholar
Tateda, K., Moore, T. A., Newstead, M. W., Tsai, W. C., Zeng, X., Deng, J. C., Chen, G., Reddy, R., Yamaguchi, K. and Standiford, T. J. (2001b). Chemokine-dependent neutrophil recruitment in a murine model of Legionella pneumonia: potential role of neutrophils as immunoregulatory cells. Infect. Immun. 69, 2017–2024CrossRefGoogle Scholar
Tilney, L. G., Harb, O. S., Connelly, P. S., Robinson, C. G. and Roy, C. R. (2001). How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J. Cell Sci. 114, 4637–4650Google ScholarPubMed
Venkataraman, C., Haack, B. J., Bondada, S. and Abu Kwaik, Y. (1997). Identification of a Gal/GalNAc lectin in the protozoan Hartmannella vermiformis as a potential receptor for attachment and invasion by the Legionnaires' disease bacterium, Legionella pneumophila. J. Exp. Med. 186, 537–547CrossRefGoogle Scholar
Venkataraman, C., Gao, L.-Y., Bondada, S. and Abu Kwaik, Y. (1998). Identification of putative cytoskeletal protein homologues in the protozoan Hartmannella vermiformis as substrates for induced tyrosine phosphatase activity upon attachment to the Legionnaires' disease bacterium, Legionella pneumophila. J. Exp. Med. 188, 505–514CrossRefGoogle ScholarPubMed
Vogel, J. P., Andrews, H. L., Wong, S. K. and Isberg, R. R. (1998). Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873–876CrossRefGoogle ScholarPubMed
Watarai, M., Andrews, H. L. and Isberg, R. R. (2001a). Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth. Mol. Microbiol. 39, 313–330CrossRefGoogle Scholar
Watarai, M., Derre, I., Kirby, J., Growney, J. D., Dietrich, W. F. and Isberg, R. R. (2001b). Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J. Exp. Med. 194, 1081–1096CrossRefGoogle Scholar
Weinbaum, D. L., Benner, R. R., Dowling, J. N., Alpern, A., Pasculle, A. W. and Donowitz, G. R. (1984). Interaction of Legionella micdadei with human monocytes. Infect. Immun. 46, 68–73Google ScholarPubMed
Winn, W. C. Jr. and Myerowitz, R. L. (1981). The pathology of the Legionella pneumonias. A review of 74 cases and the literature. Hum. Pathol. 12, 401–422CrossRefGoogle ScholarPubMed
Yamamoto, H., Ezaki, T., Ikedo, M. and Yabuuchi, E. (1991). Effects of biocidal treatments to inhibit the growth of legionellae and other microorganisms in cooling towers. Microbiol. Immunol. 35, 795–802CrossRefGoogle ScholarPubMed
Yamamoto, Y., Klein, T. W. and Friedman, H. (1992). Genetic control of macrophage susceptibility to infection by Legionella pneumophila. FEMS Microbiol. Immunol. 89, 137–146CrossRefGoogle Scholar
Yamamoto, Y., Klein, T. W. and Friedman, H. (1996). Immunoregulatory role of nitric oxide in Legionella pneumophila-infected macrophages. Cell Immunol. 171, 231–239CrossRefGoogle ScholarPubMed
Zink, S. D., Pedersen, L., Cianciotto, N. P. and Abu-Kwaik, Y. (2002). The Dot/Icm type IV secretion system of Legionella pneumophila is essential for the induction of apoptosis in human macrophages. Infect. Immun. 70, 1657–1663CrossRefGoogle ScholarPubMed
Zuckman, D. M., Hung, J. B. and Roy, C. R. (1999). Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular replication. Mol. Microbiol. 32, 990–1001CrossRefGoogle ScholarPubMed
Zusman, T., Gal-Mor, O. and Segal, G. (2002). Characterization of a Legionella pneumophila relA insertion mutant and toles of RelA and RpoS in virulence gene expression. J. Bacteriol. 184, 67–75CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Molecular ecology and cell biology of Legionella pneumophila
    • By Maëlle Molmeret, Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA, Dina M. Bitar, Department of Microbiology and Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Quds University, Jerusalem, 19356, Israel, Yousef Abu Kwaik, Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0084, USA
  • Edited by Richard J. Lamont, University of Florida
  • Book: Bacterial Invasion of Host Cells
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546273.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Molecular ecology and cell biology of Legionella pneumophila
    • By Maëlle Molmeret, Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA, Dina M. Bitar, Department of Microbiology and Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Quds University, Jerusalem, 19356, Israel, Yousef Abu Kwaik, Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0084, USA
  • Edited by Richard J. Lamont, University of Florida
  • Book: Bacterial Invasion of Host Cells
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546273.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Molecular ecology and cell biology of Legionella pneumophila
    • By Maëlle Molmeret, Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA, Dina M. Bitar, Department of Microbiology and Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Quds University, Jerusalem, 19356, Israel, Yousef Abu Kwaik, Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0084, USA
  • Edited by Richard J. Lamont, University of Florida
  • Book: Bacterial Invasion of Host Cells
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546273.007
Available formats
×