Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T12:48:46.523Z Has data issue: false hasContentIssue false

111 - Heme Oxygenase and Carbon Monoxide in Endothelial Cell Biology

from PART II - ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE

Published online by Cambridge University Press:  04 May 2010

Hong Pyo Kim
Affiliation:
The University of Pittsburgh School of Medicine, Pennsylvania
Stefan W. Ryter
Affiliation:
The University of Pittsburgh School of Medicine, Pennsylvania
Augustine M. K. Choi
Affiliation:
The University of Pittsburgh School of Medicine, Pennsylvania
William C. Aird
Affiliation:
Harvard University, Massachusetts
Get access

Summary

The realization that endogenous small gas molecules can serve critical functions in vascular biology originated in the 1980s, with the identification of the endothelial cell (EC)-derived relaxing factor as equivalent to the gas nitric oxide (NO), a potent endogenous relaxant of vascular smooth muscle (1–2). NO arises from the enzymatic conversion of L-arginine to L-citrulline, by the action of constitutive and inducible NO synthase (NOS) enzymes (3). The production of NO by endothelial NOS (eNOS) provides an essential component of EC function in the regulation of vascular processes, including vascular tone, as well as the inhibition of platelet aggregation, leukocyte adherence, and smooth muscle cell (SMC) proliferation (Reviewed in Ref. 4, 5). On the other hand, the vasoactive properties of carbon monoxide (CO) have long been recognized in the context of accidental inhalation exposure. CO binds avidly to hemoglobin, with an affinity 250 times that of oxygen, and therefore causes tissue hypoxia and ultimately death at high concentration. In the mid-twentieth century, Sjostrand and later Coburn and colleagues identified the endogenous occurrence of CO in human blood as the consequence of hemoglobin turnover (6–7). The enzymatic mechanism for the endogenous production of CO from heme degradation was identified as early as 1968, with the initial characterization of microsomal heme oxygenase (8–9), which converts heme to equimolar biliverdin-IXα, CO, and free iron. The reaction requires nicotinamide adenine dinucleotide phosphate (NADPH):cytochromep450 reductase as a source of reducing equivalents, andNADPH:biliverdin reductase (BVR) to convert biliverdin-IXα to bilirubin-IXα. Until the discovery of NO, and the elucidation of its roles in vascular signaling, endogenous CO was regarded by the scientific community as a waste product of metabolism.

Type
Chapter
Information
Endothelial Biomedicine , pp. 994 - 1003
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×