Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T17:33:24.296Z Has data issue: false hasContentIssue false

1 - Kinematics: displacements and strains

Published online by Cambridge University Press:  11 November 2009

Andrei Constantinescu
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Alexander Korsunsky
Affiliation:
University of Oxford
Get access

Summary

OUTLINE

This chapter is devoted to the introduction of the fundamental concepts used to describe continuum deformation. This is probably most naturally done using examples from fluid dynamics, by considering the description of particle motion either with reference to the initial particle positions, or with reference to the current (actual) configuration. The relationship between the two approaches is illustrated using examples, and further illustrations are provided in the exercises at the end of the chapter. Some methods of flow visualisation (streamlines and streaklines) are described and are illustrated using simple examples. The concepts are then clarified further using the example of inviscid potential flow.

Placing the focus on the description of deformation, the fundamental concept of deformation gradient is introduced. The polar decomposition theorem is used to separate deformation into rotation and stretch using appropriate tensor forms, with particular attention being devoted to the analysis of the stretch tensor and the principal stretches, using pure shear as an illustrative example. Trigonometric representation of stretch and rotation is discussed briefly.

Discussion is further specialised to the consideration of small strains. Analysis of integrability of strain fields then leads to the identification of the invariant form of compatibility conditions. This subject is important for many applications within elastic theory and is therefore dwelt on in some detail.

Type
Chapter
Information
Elasticity with Mathematica ®
An Introduction to Continuum Mechanics and Linear Elasticity
, pp. 8 - 40
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×