Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T00:20:44.559Z Has data issue: false hasContentIssue false

5 - Pressurization Effects

Published online by Cambridge University Press:  15 October 2009

James R. Senft
Affiliation:
University of Wisconsin, River Falls
Get access

Summary

Formula (4.2) for the indicated cyclic work of an ideal Stirling engine immediately suggests that output can be increased by charging the workspace with more working gas, keeping everything else the same. This is the motivation behind pressurizing or supercharging an engine. What matters in the end, of course, is whether shaft output improves, and this is a matter of mechanical efficiency.

An easy case to understand at this point is that of an ideal Stirling engine having a constant mechanism effectiveness and optimum buffer pressure. Its mean workspace pressure would be proportional to m, as Formula (3.9) explicitly shows. The Maximum Shaft Work Theorem (4.4) thus implies that if the engine has the charge of its working gas increased by a certain factor, and its buffer pressure adjusted to be optimal for the new charge (in fact, it will need to be increased by exactly the same factor, as Formula (3.4) shows), the shaft output will increase by the same factor. Hence, pressurizing an optimal ideal Stirling in this way will increase output in direct proportion to the charge factor. This kind of pressurization, called system charging, where the workspace and buffer pressure are charged together uniformly by the same factor, produces the same best possible results in many engine and buffer pressure combinations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Pressurization Effects
  • James R. Senft, University of Wisconsin, River Falls
  • Book: Mechanical Efficiency of Heat Engines
  • Online publication: 15 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546105.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Pressurization Effects
  • James R. Senft, University of Wisconsin, River Falls
  • Book: Mechanical Efficiency of Heat Engines
  • Online publication: 15 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546105.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Pressurization Effects
  • James R. Senft, University of Wisconsin, River Falls
  • Book: Mechanical Efficiency of Heat Engines
  • Online publication: 15 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546105.006
Available formats
×