Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T18:00:31.206Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 September 2009

Steven D. Fleming
Affiliation:
University of Sydney
Robert S. King
Affiliation:
Eppendorf Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbondanzo, S., Gadi, I. and Stewart, C. (1993). Derivation of embryonic stem cell lines. In Methods in Enzymology, ed. P. M. Wassarman and M. L. De Pamphilis. p. 803. New York: Academic PressCrossRef
Abdelmassih, S., Cardoso, J., Abdelmassih, V., Dias, J., Abdelmassih, R. and Nagy, Z. (2002). Laser-assisted intracytoplasmic sperm injection: a novel approach to obtain higher oocyte survival and embryo quality rates. Hum. Reprod. 17, 2694–9CrossRefGoogle ScholarPubMed
Al-Hasani, S., Bauer, O., Ludwig, M., et al. (1999). Results of intracytoplasmic sperm injection using the microprocessor controlled TransferMan Eppendorf manipulator system. Middle East Fertil. Soc. J. 1, 41–4Google Scholar
Alikani, M., Cohen, J., Tomkin, G., Garrisi, G., Mack, C. and Scott, R. (1999). Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil. Steril. 71, 836–42CrossRefGoogle ScholarPubMed
Aslam, I. and Fishel, S. (1998). Short-term in-vitro culture and cryopreservation of spermatogenic cells used for human in-vitro conception. Hum. Reprod. 13, 634–8CrossRefGoogle ScholarPubMed
Aslam, I., Robins, A., Dowell, K. and Fishel, S. (1998). Isolation, purification and assessment of viability of spermatogenic cells from testicular biopsies of azoospermic men. Hum. Reprod. 13, 639–45CrossRefGoogle ScholarPubMed
Balaban, B., Urman, B., Alatas, C., Mercan, R., Mumcu, A. and Isiklar, A. (2002). A comparison of four different techniques of assisted hatching. Hum. Reprod. 17, 1239–43CrossRefGoogle ScholarPubMed
Balakier, H., Bouman, D., Sojecki, A., Librach, C. and Squire, J. (2002). Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Hum. Reprod. 17, 2394–401CrossRefGoogle ScholarPubMed
Barnes, F., Crombie, A., Gardner, D., et al. (1995). Blastocyst development and birth after in-vitro maturation of human primary oocytes, intracytoplasmic sperm injection and assisted hatching. Hum. Reprod. 10, 3243–7CrossRefGoogle ScholarPubMed
Bellve, R. (1993). Purification, culture and fractionation of spermatogenic cells. Methods Enzymol. 225, 84–113CrossRefGoogle ScholarPubMed
Blake, M., Garrisi, J., Tomkin, G. and Cohen, J. (2000). Sperm deposition site during intracytoplasmic sperm injection affects fertilization and development. Fertil. Steril. 73, 31–7CrossRefGoogle ScholarPubMed
Blanchard, Y., Lavault, M., Quernee, D., Lannou, D., Lobel, B. and Lescoat, D. (1991). Preparation of spermatogenic cell populations at specific stages of differentiation in the human. Mol. Reprod. Dev. 30, 275–82CrossRefGoogle ScholarPubMed
Bongso, T., Sathananthan, A., Wong, P., et al. (1989). Human fertilization by micro-injection of immotile spermatozoa. Hum. Reprod. 4, 175–9CrossRefGoogle ScholarPubMed
Bras, M., Dumoulin, J., Pieters, M., Michiels, A., Geraedts, J. and Evers, J. (1994). The use of a mouse zygote quality control system for training purposes and toxicity determination in an intracytoplasmic sperm injection programme. Hum. Reprod. 9 (Suppl. 4), 23Google Scholar
Brinster, R., Chen, H., Trumbauer, M., Yagle, M. and Palmiter, R. (1985). Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc. Natl. Acad. Sci.USA 82, 4438–42CrossRefGoogle ScholarPubMed
Brown, K. and Flaming, D. (1974). Beveling of fine micropipette electrodes by a rapid precision method. Science 185, 693–5CrossRefGoogle ScholarPubMed
Cabot, R., Kuhholzer, B., Chan, A., et al. (2001). Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim. Biotechnol. 12, 205–14CrossRefGoogle ScholarPubMed
Campbell, K. (2002). A background to nuclear transfer and its applications in agriculture and human therapeutic medicine. J. Anat. 200, 267–75CrossRefGoogle ScholarPubMed
Cha, K. and Chian, R. (1998). Maturation in vitro of immature human oocytes for clinical use. Hum. Reprod. Update 4, 103–20CrossRefGoogle ScholarPubMed
Cha, K., Koo, J., Ko, J., Choi, D., Han, S. and Yoon, T. (1991). Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil. Steril. 55, 109–13CrossRefGoogle Scholar
Chan, A., Chong, K., Martinovich, C., Simerly, C. and Schatten, G. (2002). Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291, 309–12CrossRefGoogle Scholar
Chan, A., Luetjens, C., Dominko, T., et al. (2000). Foreign DNA transmission by intracytoplasmic sperm injection: injection of spermatozoa bound with exogenous DNA results in embryonic GFP expression and live Rhesus monkey births. Mol. Hum. Reprod. 6, 26–33CrossRefGoogle ScholarPubMed
Cibelli, J., Kiessling, A., Cunniff, K., Richards, C., Lanza, R. and West, M. (2001). Somatic cell nuclear transfer in humans: pronuclear and early embryonic development. J. Regenerative Med. 2, 25–31Google Scholar
Cohen, J., Malter, H., Fehilly, C., et al. (1988). Implantation of embryos after partial opening of oocyte zona pellucida to facilitate sperm penetration. Lancet 2, 162CrossRefGoogle ScholarPubMed
Cohen, J., Elsner, C., Kort, H., et al. (1990). Impairment of the hatching process following in vitro fertilization in the human and improvement of implantation by assisting hatching using micromanipulation. Hum. Reprod. 5, 7–13CrossRefGoogle ScholarPubMed
Cohen, J., Malter, H., Talansky, B. and Grifo, J. (1992). Micromanipulation of Human Gametes and Embryos. New York: Raven Press
Cohen, J., Garrisi, G., Congedo-Ferrara, T., Kieck, K., Schimmel, T. and Scott, R. (1997a). Cryopreservation of single human spermatozoa. Hum. Reprod. 12, 994–1001CrossRef
Cohen, J., Scott, R., Schimmel, T., Levron, J. and Willadsen, S. (1997b). Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 350, 186–7CrossRefGoogle Scholar
Cooke, S. Tyler, J. and Driscoll, G. (2003). Meiotic spindle location and identification and its effect on embryonic cleavage plane and early development. Hum. Reprod., in pressCrossRef
Coskun, S., Tbakhi, A., Jaroudi, K., Uzumcu, M., Merdad, T. and Al-Hussein, K. (2002). Flow cytometric ploidy analysis of testicular biopsies from sperm-negative wet preparations. Hum. Reprod. 17, 977–83CrossRefGoogle ScholarPubMed
Coticchio, G. and Fleming, S. (1998). Inhibition of phosphoinositide metabolism or chelation of intracellular calcium blocks follicle-stimulating hormone-induced but not spontaneous meiotic resumption in mouse oocytes. Dev. Biol. 203, 201–9CrossRefGoogle Scholar
Crabbe, E., Verheyen, G., Tournaye, H. and Steirteghem, A. (1997). The use of enzymatic procedures to recover testicular germ cells. Hum. Reprod. 12, 1682–7CrossRefGoogle ScholarPubMed
Crabbe, E., Verheyen, G., Silber, S., et al. (1998). Enzymatic digestion of testicular tissue may rescue the intracytoplasmic sperm injection cycle in some patients with non-obstructive azoospermia. Hum. Reprod. 13, 2791–6CrossRefGoogle ScholarPubMed
Cremades, N., Sousa, M., Bernabeu, R. and Barros, A. (2001). Developmental potential of elongating and elongated spermatids obtained after in-vitro maturation of isolated round spermatids. Hum. Reprod. 16, 1938–44CrossRefGoogle ScholarPubMed
Vos, A., Nagy, Z., Velde, H., Joris, H., Bocken, G. and Steirteghem, A. (1997). Percoll gradient centrifugation can be omitted in sperm preparation for intracytoplasmic sperm injection. Hum. Reprod. 12, 1980–84CrossRefGoogle ScholarPubMed
Doetschman, T., Eistetter, H., Katz, M., Schmidt, W. and Kamler, R. (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45Google ScholarPubMed
Dozortsev, D., Sutter, P. and Dhont, M. (1994). Behaviour of spermatozoa in human oocytes displaying no or one pronucleus after intracytoplasmic sperm injection. Hum. Reprod. 9, 2139–44CrossRefGoogle ScholarPubMed
Dumoulin, J., Bras, M., Coonen, E., Dreesen, J., Geraedts, J. and Evers, J. (1998). Effect of Ca2+/Mg2+-free medium on the biopsy procedure for preimplantation genetic diagnosis and further development of human embryos. Hum. Reprod. 13, 2880–83CrossRefGoogle ScholarPubMed
Dumoulin, J., Coonen, E., Bras, M., et al. (2001). Embryo development and chromosomal anomalies after intracytoplasmic sperm injection: effect of the injection procedure. Hum. Reprod. 16, 306–12CrossRefGoogle ScholarPubMed
Ebner, T., Moser, M., Yaman, C., Feichtinger, O., Hartl, J. and Tews, G. (1999). Elective transfer of embryos selected on the basis of first polar body morphology is associated with increased rates of implantation and pregnancy. Fertil. Steril. 72, 599–603CrossRefGoogle Scholar
Edwards, R. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208, 349–51CrossRefGoogle ScholarPubMed
Eichenlaub-Ritter, U., Shen, Y. and Tinneberg, H. (2002). Manipulation of the oocyte: possible damage to the spindle apparatus. Reprod. Biomed. Online 5, 117–24CrossRefGoogle ScholarPubMed
Fishel, S., Green, S., Bishop, M., et al. (1995a). Pregnancy after intracytoplasmic injection of spermatid. Lancet 345, 1641–2CrossRefGoogle Scholar
Fishel, S., Lisi, F., Rinaldi, L., et al. (1995b). Intracytoplasmic sperm injection (intracytoplasmic sperm injection) versus high insemination concentration (high insemination concentration) for human conception in vitro. Reprod. Fertil. Dev. 7, 169–75CrossRefGoogle Scholar
Fleming, S., Green, S., Hall, J. and Fishel, S. (1994). Sperm function and its manipulation for microassisted fertilization. In Bailliere's Clinical Obstetrics and Gynaecology: Micromanipulation Techniques, ed. S. Fishel, Vol. 8(1), pp. 43–64. London: Bailliere TindallCrossRef
Fleming, S., Meniru, G., Hall, J. and Fishel, S. (1997). Semen analysis and sperm preparation. In A Handbook of Intrauterine Insemination, ed. G. I. Meniru, P. R. Brinsden and I. L. Craft, pp. 129–45. Cambridge: Cambridge University Press.
Galli-Taliadoros, L., Sedgwick, J., Wood, S. and Koerner, H. (1995). Gene knock-out technology: a methodological overview for the interested novice. J. Immunol. Methods 181, 1–15CrossRefGoogle ScholarPubMed
Gianaroli, L., Magli, M., Ferraretti, A., et al. (1996a). Reducing the time of sperm–oocyte interaction in human in-vitro fertilization improves the implantation rate. Hum. Reprod. 11, 166–71CrossRefGoogle Scholar
Gianaroli, L., Fiorentino, A., Magli, M., Ferraretti, A. and Montanaro, N. (1996b). Prolonged sperm–oocyte exposure and high sperm concentration affect human embryo viability and pregnancy rate. Hum. Reprod. 11, 2507–11CrossRefGoogle Scholar
Gimenez, E. and Montoliu, L. (2001). A simple polymerase chain reaction assay for genotyping the retinal degeneration mutation (Pdebrdl in FVB/N-derived transgenic mice. Lab. Animals 35, 153–6CrossRefGoogle Scholar
Goelz, M., Mahler, J., Harry, J., et al. (1998). Neuropathologic findings associated with seizures in FVB mice. Lab. Anim. Sci. 48, 34–7Google ScholarPubMed
Gordon, J. (1993). Production of transgenic mice. In Methods in Enzymology: Guide to Techniques in Mouse Development, ed. P. Wassarman and M. L. DePamphilis, pp 747–81. London: Academic PressCrossRef
Gordon, J. and Talansky, B. (1986). Assisted fertilization by zona drilling: a mouse model for correction of oligozoospermia. J. Exp. Zool. 239, 347–54CrossRefGoogle Scholar
Gordon, J., Scangos, G., Plotkin, D., Barbosa, J. and Ruddle, F. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci.USA 77, 7380–84CrossRefGoogle ScholarPubMed
Gordon, J., Grunfeld, J., Garrisi, G., Talansky, B., Richards, C. and Laufer, N. (1988). Fertilization of human oocytes by sperm from infertile males after zona pellucida drilling. Fertil. Steril. 50, 68–73CrossRefGoogle ScholarPubMed
Hall, J. and Fleming, S. (2001). Short duration high insemination concentration-in vitro fertilization is beneficial to in vitro fertilization outcome. Presented at 17th World Congress on Fertility and Sterility in Melbourne, Australia, 25–30 November 2001
Hall, J., Fishel, S., Green, S., et al. (1995a). Intracytoplasmic sperm injection versus high insemination concentration in-vitro fertilization in cases of very severe teratozoospermia. Hum. Reprod. 10, 493–6CrossRefGoogle Scholar
Hall, J., Fishel, S., Timson, J., Dowell, K. and Klentzeris, L. (1995b). Human sperm morphology evaluation pre- and post-Percoll gradient centrifugation. Hum. Reprod. 10, 342–6CrossRefGoogle Scholar
Hamberger, L., Sjogren, A., Lundin, K., et al. (1995). Microfertilization techniques – the Swedish experience. Reprod. Fertil. Dev. 7, 263–8CrossRefGoogle ScholarPubMed
Handyside, A., Kontogianni, E., Hardy, K. and Winston, R. (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344, 378–379CrossRefGoogle ScholarPubMed
Hardarson, T., Lundin, K. and Hamberger, L. (2000). The position of the metaphase II spindle cannot be predicted by the location of the first polar body in the human oocyte. Hum. Reprod. 15, 1372–6CrossRefGoogle ScholarPubMed
Harvey, A., Speksnider, G., Baugh, L., Morris, J. and Ivarie, R. (2002). Expression of exogenous protein in the egg white of transgenic chickens. Nat. Biotechnol. 20, 396–9CrossRefGoogle ScholarPubMed
Haskell, R. and Bowen, R. (1995). Efficient production of transgenic cattle by retroviral infection of early embryos. Mol. Reprod. Dev. 40, 386–90CrossRefGoogle ScholarPubMed
Hawes, S., Sapienza, C. and Latham, K. (2002). Ooplasmic donation in humans: the potential for epigenic modifications. Hum. Reprod. 17, 850–52CrossRefGoogle ScholarPubMed
Hogan, B., Beddington, R., Constantini, F. and Lacy, E. (1994). Manipulating the Mouse Embryo, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
Hooper, M., Hardy, K., Handyside, A., Hunter, S. and Monk, M. (1987). HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–5CrossRefGoogle ScholarPubMed
Hsu, M., Mayer, J., Aronshon, M., et al. (1999). Embryo implantation in in-vitro fertilization and intracytoplasmic sperm injection: impact of cleavage status, morphology grade, and number of embryos transferred. Fertil. Steril. 72, 679–85CrossRefGoogle ScholarPubMed
Jacobs, M., Stolwijk, A. and Wetzels, A. (2001). The effect of insemination/injection time on the results of in vitro fertilization and intracytoplasmic sperm injection. Hum. Reprod. 16, 1708–13CrossRefGoogle Scholar
Jaenish, R. (1988). Transgenic animals. Science 240, 1468–74CrossRefGoogle Scholar
Jeyendran, R., Ven, H., Perez-Pelaez, M., Crabo, B. and Zaneveld, L. (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 70, 219–28CrossRefGoogle ScholarPubMed
Johnson, L., Neaves, W., Barnard, J., Keillor, G., Brown, S. and Yanagimachi, R. (1999). A comparative morphological study of human germ cells in vitro or in situ within seminiferous tubules. Biol. Reprod. 61, 927–34CrossRefGoogle ScholarPubMed
Johnson, L., Staub, C., Neaves, W. and Yanagimachi, R. (2001). Live human germ cells in the context of their spermatogenic stages. Hum. Reprod. 16, 1575–82CrossRefGoogle ScholarPubMed
Jurisicova, A., Varmuza, S. and Casper, R. (1996). Programmed cell death and human embryo fragmentation. Mol. Hum. Reprod. 2, 93–8CrossRefGoogle ScholarPubMed
Koentgen, F., Suss, G., Stewart, C., Steinmetz, M. and Bluthmann, H. (1993). Targeted disruption of the major histocompatibility complex class II Aa gene in C57BL/6 mice. Int. Immunol. 5, 957–64CrossRefGoogle Scholar
Koerner, H., Cook, M., Riminton, D., et al. (1997). Distinct roles for lymphotoxin-α and tumour necrosis factor in organogenesis and spatial organization of lymphoid tissue. Eur. J. Immunol. 27, 2600–09CrossRefGoogle Scholar
Kruger, T., Ackerman, S., Simmons, K., Swanson, R., Brugo, S. and Acosta, A. (1987). A quick, reliable staining technique for human sperm morphology. Arch. Androl. 18, 275–7CrossRefGoogle ScholarPubMed
Kuczynski, W., Dhont, M., Grygoruk, C., Pietrewicz, P., Redzko, S. and Szamatowicz, M. (2002). Rescue intracytoplasmic sperm injection of unfertilized oocytes after in vitro fertilization. Hum. Reprod. 17, 2423–7CrossRefGoogle Scholar
Lacham-Kaplan, O., Daniels, R. and Trounson, A. (2001). Fertilization of mouse oocytes using somatic cells as male germ cells. Reprod. Biomed. Online 2, 203–9Google Scholar
Lanzendorf, S., Maloney, M., Veeck, L., Slusser, J., Hodgen, G. and Rosenwaks, Z. (1988). A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes. Fertil. Steril. 49, 835–42CrossRefGoogle ScholarPubMed
Larson, K., Brannian, J., Timm, B., Jost, L. and Evenson, D. (1999). Density gradient centrifugation and glass wool filtration of semen remove spermatozoa with damaged chromatin structure. Hum. Reprod. 14, 2015–19CrossRefGoogle ScholarPubMed
Latham, K. and Solter, D. (1993). Transplantation of nuclei to oocytes and embryos. In Methods in Enzymology: Guide to Techniques in Mouse Development, ed. P. M. Wassarman and M. L. DePamphilis, pp. 719–44. London: Academic PressCrossRef
Laws-King, A., Trounson, A., Sathananthan, H. and Kola, I. (1987). Fertilization of human oocytes by micro-injection of a single spermatozoon under the zona pellucida. Fertil. Steril. 48, 637–42CrossRefGoogle Scholar
Ledermann, B. and Burki, K. (1991). Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp. Cell Res. 197, 254–8CrossRefGoogle ScholarPubMed
Lemckert, F., Sedgwick, J. and Koerner, H. (1997). Gene targeting in C57BL/6 ES cells. Successful germ line transmission using recipient BALB/c blastocysts developmentally matured in vitro. Nucleic Acids Res. 25, 917–8CrossRefGoogle ScholarPubMed
Li, E., Bestor, T. and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–26CrossRefGoogle ScholarPubMed
Lipitz, S., Rabinovici, J., Goldenberg, M., Bider, D., Dor, J. and Mashiach, S. (1994). Complete failure of fertilization in couples with mechanical infertility: implications for subsequent in vitro fertilization cycles. Fertil. Steril. 61, 863–6CrossRefGoogle ScholarPubMed
Lundin, K., Sjogren, A., Nilsson, L. and Hamberger, L. (1994). Fertilization and pregnancy after intracytoplasmic sperm injection of acrosomeless spermatozoa. Fertil. Steril. 62, 1266–7CrossRefGoogle Scholar
Lundin, K., Sjogren, A. and Hamberger, L. (1996). Reinsemination of one-day-old oocytes by use of intracytoplasmic sperm injection. Fertil. Steril. 66, 118–21CrossRefGoogle ScholarPubMed
Mahajan, N., Fishel, S., Green, S., Fleming, S. and Thornton, S. (1994). The effect of various concentrations of pentoxifylline on survival and motility of spermatozoa. Hum. Reprod. 9, (Suppl. 3), 6Google Scholar
Mahler, J., Stokes, W., Mann, P., Takaoka, M. and Maronpot, R. (1996). Spontaneous lesions in aging FVB/N mice. Toxicol. Pathol. 24, 710–16CrossRefGoogle ScholarPubMed
Mantoudis, E., Podsiadly, B., Gorgy, A., Venkat, G. and Craft, I. (2002). A comparison between quarter, partial and total laser assisted hatching in selected infertility patients. Hum. Reprod. 16, 2182–6CrossRefGoogle Scholar
Mays-Hoopes, L., Bolen, J., Riggs, A. and Singer-Sam, J. (1995). Preparation of spermatogonia, spermatocytes, and round spermatids for analysis of gene expression using fluorescence-activated cell sorting. Biol. Reprod. 53, 1003–11CrossRefGoogle ScholarPubMed
Meisler, M. (1992). Insertional mutation of ‘classical’ and novel genes in transgenic mice. Trends Genet. 8, 341–4Google ScholarPubMed
Mizuarai, S., Ono, K., Yamaguchi, K., Nishijima, K., Kamihira, M. and Iijima, S. (2001). Production of transgenic quails with high frequency of germ-line transmission using VSV-G pseudotyped retroviral vector. Biochem. Biophys. Res. Com. 286, 456–63CrossRefGoogle ScholarPubMed
Montag, M., Rink, K., Delacretaz, G. and Ven, H. (2000). Laser-induced immobilization and plasma membrane permeabilization in human spermatozoa. Hum. Reprod. 15, 846–52CrossRefGoogle ScholarPubMed
Moohan, J., Winston, R. and Lindsay, K. (1993). Variability of human sperm response to immediate and prolonged exposure to pentoxifylline. Hum. Reprod. 8, 1696–700CrossRefGoogle ScholarPubMed
Moomjy, M., Colombero, L., Veeck, L., Rosenwaks, Z. and Palermo, G. (1999). Sperm integrity is critical for normal mitotic division and early embryonic development. Mol. Hum. Reprod. 5, 836–44CrossRefGoogle ScholarPubMed
Mortimer, D. (1994). Practical Laboratory Andrology. New York: Oxford University Press
Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. and Roder, J. (1993a). Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci.USA 90, 8424–8CrossRefGoogle Scholar
Nagy, Z., Joris, H., Liu, J., Staessen, C., Devroey, P. and Steirteghem, A. (1993b). Intracytoplasmic single sperm injection of 1 day-old unfertilized human oocytes. Hum. Reprod. 8, 2180–84CrossRefGoogle Scholar
Nagy, Z., Liu, J., Joris, H., (1995a). The results of intracytoplasmic sperm injection are not related to any of the three basic sperm parameters. Hum. Reprod. 10, 1123–9CrossRefGoogle Scholar
Nagy, Z., Liu, J., Joris, H., et al. (1995b). The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates. Hum. Reprod. 10, 3171–7CrossRefGoogle Scholar
Nagy, Z., Liu, J., Cecile, J., Silber, S., Devroey, P. and Steirteghem, A. (1995c). Using ejaculated, fresh, and frozen-thawed epididymal and testicular spermatozoa gives rise to comparable results after intracytoplasmic sperm injection. Fertil. Steril. 63, 808–15CrossRefGoogle Scholar
Nagy, Z., Verheyen, G., Tournaye, H., Devroey, P. and Steirteghem, A. (1997). An improved treatment procedure for testicular biopsy specimens offers more efficient sperm recovery: case series. Fertil. Steril. 68, 376–9CrossRefGoogle ScholarPubMed
Nakagawa, K., Yamano, S., Nakasaka, H., Hinokio, K., Yoshizawa, M. and Aono, T. (2001). A combination of calcium ionophore and puromycin effectively produces human parthenogenones with one haploid pronucleus. Zygote 9, 83–8CrossRefGoogle ScholarPubMed
Ng, S., Bongso, A., Ratnam, S., et al. (1988). Pregnancy after transfer of sperm under zona. Lancet 2, 790CrossRefGoogle ScholarPubMed
Ng, S., Bongso, A. and Ratnam, S. (1991). Microinjection of human oocytes: a technique for severe oligoasthenoteratozoospermia. Fertil. Steril. 56, 1117–23CrossRefGoogle ScholarPubMed
O'Brien, D. (1993). Isolation, separation, and short-term culture of spermatogenic cells. In Methods in Toxicology, ed. R. Chapin and J. Heindel, Vol. 3A, pp. 246–64. New York: Academic PressCrossRef
Ord, T., Marello, E., Patrizio, P., Balmaceda, J., Silber, S. and Asch, R. (1992). The role of the laboratory in the handling of epididymal sperm for assisted reproductive technologies. Fertil. Steril. 57, 1103–6CrossRefGoogle Scholar
Palermo, G., Joris, H., Devroey, P. and Steirteghem, A. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17–18CrossRefGoogle ScholarPubMed
Palermo, G., Takeuchi, T. and Rosenwaks, Z. (2002). Technical approaches to correction of oocyte aneuploidy. Hum. Reprod. 17, 2165–73CrossRefGoogle ScholarPubMed
Parinaud, J., Vieitez, G., Milhet, P. and Richoilley, G. (1998). Use of a plant enzyme preparation (Coronase) instead of hyaluronidase for cumulus cell removal before intracytoplasmic sperm injection. Hum. Reprod. 13, 1933–5CrossRefGoogle ScholarPubMed
Payne, D., Flaherty, S., Jeffrey, R., Warnes, G. and Matthews, C. (1994). Successful treatment of severe male factor infertility in 100 consecutive cycles using intracytoplasmic sperm injection. Hum. Reprod. 9, 2051–7CrossRefGoogle ScholarPubMed
Petters, R. and Sommer, J. (2000). Transgenic animals as models for human disease. Transgenic Res. 9, 347–51CrossRefGoogle ScholarPubMed
Prather, R., Tao, T. and Machaty, Z. (1999). Development of the techniques for nuclear transfer in pigs. Theriogenology 51, 487–98CrossRefGoogle ScholarPubMed
Rawlins, R., Binor, Z., Radwanska, E. and Dmowski, W. (1988). Microsurgical enucleation of tripronuclear human zygotes. Fertil. Steril. 50, 266–72CrossRefGoogle ScholarPubMed
Robertson, E. (1987). Embryo-derived stem cell lines. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, ed. E. J. Robertson, p. 71. Oxford: IRL Press
Robertson, E., Bradley, A., Kuehn, M. and Evans, M. (1986). Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445–8CrossRefGoogle ScholarPubMed
Ron-El, R., Strassburger, D., Friedler, S., et al. (1997). Extended sperm preparation: an alternative to testicular sperm extraction in non-obstructive azoospermia. Hum. Reprod. 12, 1222–6CrossRefGoogle ScholarPubMed
Ron-El, R., Strassburger, D., Friedler, S., Komarovski, D., Bern, O. and Raziel, A. (1998). Repetitive ejaculation before intracytoplasmic sperm injection in patients with absolute immotile spermatozoa. Hum. Reprod. 13, 630–33CrossRefGoogle ScholarPubMed
Rosenbusch, B., Schneider, M., Glaser, B. and Brucker, C. (2002). Cytogenetic analysis of giant oocytes and zygotes to assess their relevance for the development of digynic triploidy. Hum. Reprod. 17, 2388–93CrossRefGoogle ScholarPubMed
Russell, J., Knezevich, K., Fabian, K. and Dickson, J. (1997). Unstimulated immature oocyte retrieval: early versus midfollicular endometrial priming. Fertil. Steril. 67, 616–20CrossRefGoogle ScholarPubMed
Salzbrunn, A., Benson, D., Holstein, A. and Schulze, W. (1996). A new concept for the extraction of testicular spermatozoa as a tool for assisted fertilization (intracytoplasmic sperm injection). Hum. Reprod. 11, 752–5CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
Sathananthan, A., Ng, S., Trounson, A., Bongso, A., Laws-King, A. and Ratnam, S. (1989). Human micro-insemination by injection of single or multiple sperm: ultrastructure. Hum. Reprod. 4, 574–83CrossRefGoogle ScholarPubMed
Schnieke, R., Harbers, K. and Jaenisch, R. (1983). Embryonic lethal mutation in mice induced by retrovirus insertion into the 19 (I) collagen gene. Nature 304, 315–20CrossRefGoogle Scholar
Shepherd, W., Millette, F. and DeWolf, C. (1981). Enrichment of primary pachytene spermatocytes from the human testes. Gamete Res. 4, 487–98CrossRefGoogle Scholar
Silber, S., Nagy, Z., Liu, J., Godoy, H., Devroey, P. and Steirteghem, A. (1994). Conventional in-vitro fertilization versus intracytoplasmic sperm injection for patients requiring microsurgical sperm aspiration. Hum. Reprod. 9, 1705–9CrossRefGoogle ScholarPubMed
Silber, S., Steirteghem, A. and Devroey, P. (1995). Sertoli cell only revisited. Hum. Reprod. 10, 1031–2CrossRefGoogle ScholarPubMed
Silva, C., Kommineni, K., Oldenbourg, R. and Keeje, D. (1999). The first polar body does not predict accurately the location of the metaphase II meiotic spindle in mammalian oocytes. Fertil. Steril. 71, 719–21CrossRefGoogle Scholar
Sjogren, A., Lundin, K. and Hamberger, L. (1995). Intracytoplasmic sperm injection of 1 day old oocytes after fertilization failure. Hum. Reprod. 10, 974Google ScholarPubMed
Smith, A., Heath, J., Donaldson, D., et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–90CrossRefGoogle ScholarPubMed
Sofikitis, N., Mantzavinos, T., Loutradis, D., Yamamoto, Y., Tarlatzis, V. and Miyagawa, I. (1998). Ooplasmic injections of secondary spermatocytes for non-obstructive azoospermia. Lancet 351, 1177–8CrossRefGoogle ScholarPubMed
Sousa, M., Mendoza, C., Barros, A. and Tesarik, J. (1996). Calcium responses of human oocytes after intracytoplasmic injection of leukocytes, spermatocytes and round spermatids. Mol. Hum. Reprod. 2, 853–7CrossRefGoogle ScholarPubMed
Stoddart, N. and Fleming, S. (2000). Orientation of the first polar body of the oocyte at 6 or 12 o'clock during intracytoplasmic sperm injection does not affect clinical outcome. Hum. Reprod. 15, 1580–5CrossRefGoogle Scholar
Sultan, K., Munné, S., Palermo, G., Alikani, M. and Cohen, J. (1995). Chromosomal status of uni-pronuclear human zygotes following in-vitro fertilization and intracytoplasmic sperm injection. Hum. Reprod. 10, 132–6CrossRefGoogle ScholarPubMed
Svalander, P., Jakobsson, A.-H., Forsberg, A.-S., Bengtsson, A.-C. and Wikland, M. (1996). The outcome of intracytoplasmic sperm injection is unrelated to ‘strict criteria’ sperm morphology. Hum. Reprod. 11, 1019–22CrossRefGoogle ScholarPubMed
Taketo, M., Schroeder, A., Mobraaten, L., et al. (1991). FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc. Natl. Acad. Sci.USA 88, 2065–9CrossRefGoogle ScholarPubMed
Tesarik, J. and Kopecny, V. (1989). Developmental control of the human male pronucleus by ooplasmic factors. Hum. Reprod. 4, 962–8CrossRefGoogle ScholarPubMed
Tesarik, J. and Mendoza, C. (1996). Spermatid injection into human oocytes. I. Laboratory techniques and special features of zygote development. Hum. Reprod. 11, 772–9CrossRefGoogle ScholarPubMed
Tesarik, J., Sousa, M. and Testart, J. (1994). Human oocyte activation after intracytoplasmic sperm injection. Hum. Reprod. 9, 511–8CrossRefGoogle ScholarPubMed
Tesarik, J., Mendoza, C. and Testart, J. (1995). Viable embryos from injection of round spermatids into oocytes. N. Engl. J. Med. 333, 525CrossRefGoogle ScholarPubMed
Tesarik, J., Greco, E., Rienzi, L., et al. (1998). Differentiation of spermatogenic cells during in-vitro culture of testicular biopsy samples from patients with obstructive azoospermia: effect of recombinant follicle stimulating hormone. Hum. Reprod. 13, 2772–81CrossRefGoogle ScholarPubMed
Tesarik, J., Bahceci, M., Ozcan, C., Greco, E. and Mendoza, C. (1999). Restoration of fertility by in-vitro spermatogenesis. Lancet 353, 555–6CrossRefGoogle ScholarPubMed
Tesarik, J., Nagy, Z., Sousa, M., Mendoza, C. and Abdelmassih, R. (2001). Fertilizable oocytes reconstructed from patient's somatic cell nuclei and donor ooplasts. Reprod. Biomed. Online 2, 160–4CrossRefGoogle ScholarPubMed
Thomas, K. and Capecchi, M. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–12CrossRefGoogle ScholarPubMed
Trounson, A., Wood, C. and Kausche, A. (1994). In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil. Steril. 62, 353–62CrossRefGoogle ScholarPubMed
Trounson, A., Bongso, A., Szell, A. and Barnes, F. (1996). Maturation of human and bovine primary oocytes in vitro for fertilization and embryo production. Singapore J. Obstet. Gynecol. 27, 78–84Google Scholar
Tsai, M., Takeuchi, T., Bedford, J., Reis, M., Rosenwaks, Z. and Palermo, G. (2000). Alternative sources of gametes: reality or science fiction? Hum. Reprod. 15, 988–98CrossRefGoogle ScholarPubMed
Tsirigotis, M., Redgment, C. and Craft, I. (1994). Late intracytoplasmic sperm injection (intracytoplasmic sperm injection) in in-vitro fertilization (in vitro fertilization) cycles. Hum. Reprod. 9, 1359CrossRefGoogle ScholarPubMed
Urman, B., Alatas, C., Aksoy, S., et al. (2002). Transfer at the blastocyst stage of embryos derived from testicular round spermatid injection. Hum. Reprod. 17, 741–3CrossRefGoogle ScholarPubMed
Vanderzwalmen, P., Bertin, G. and Geerts, L. (1991). Spermatozoa morphology and in vitro fertilization pregnancy rate: a comparison between percoll gradient centrifugation and swim-up procedures. Hum. Reprod. 6, 581–8CrossRefGoogle Scholar
Vanderzwalmen, P., Zech, H., Birkenfeld, A., et al. (1997). Intracytoplasmic injection of spermatids retrieved from testicular tissue: influence of testicular pathology, type of selected spermatids and oocyte activation. Hum. Reprod. 12, 1203–13CrossRefGoogle ScholarPubMed
Verheyen, G., Croo, I., Tournaye, H., Pletincx, I., Devroey, P. and Steirteghem, A. (1995). Comparison of four mechanical methods to retrieve spermatozoa from testicular tissue. Hum. Reprod. 10, 2956–9CrossRefGoogle ScholarPubMed
Verheyen, G., Joris, H., Crits, K., Nagy, Z., Tournaye, H. and Steirteghem, A. (1997). Comparison of different hypo-osmotic swelling solutions to select viable immotile spermatozoa for potential use in intracytoplasmic sperm injection. Hum. Reprod. Update 3, 195–203CrossRefGoogle ScholarPubMed
Wang, W., Meng, L., Hackett, R., Odenbourg, R. and Keefe, D. (2001a). The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil. Steril. 75, 348–53CrossRefGoogle Scholar
Wang, W., Meng, L., Hackett, R. and Keefe, D. (2001b). Developmental ability of human oocytes with or without birefringent spindles imaged by Polscope before insemination. Hum. Reprod. 16, 1464–8CrossRefGoogle Scholar
Wang, W., Meng, L., Hackett, R., Odenbourg, R. and Keefe, D. (2001c). Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum. Reprod. 16, 2374–8CrossRefGoogle Scholar
Wang, W., Meng, L., Hackett, R., Odenbourg, R. and Keefe, D. (2001d). Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil. Steril. 77, 1274–7CrossRefGoogle Scholar
Wheeler, M. and Walters, E. (2001). Transgenic technology and applications in swine. Theriogenology 56, 1345–69CrossRefGoogle ScholarPubMed
Williams, R., Hilton, D., Pease, S., et al. (1988). Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–7CrossRefGoogle ScholarPubMed
Wilmut, I., Beaujean, N., Sousa, P., et al. (2002). Somatic cell nuclear transfer. Nature 419, 583–6CrossRefGoogle ScholarPubMed
Wolfy, E., Zakhartchenko, V. and Brem, G. (1998). Nuclear transfer in mammals: recent developments and future perspectives. J. Biotechnol. 65, 99–110Google Scholar
Wood, S., Allen, N., Rossant, J., Auerbach, A. and Nagy, A. (1993). Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365, 87–9CrossRefGoogle ScholarPubMed
World Health Organization (1999). World Health Organization Laboratory Manual for the Examination of Human Semen and Sperm–Cervical Mucus Interaction. Cambridge: Cambridge University Press.
Yamanaka, K., Sofikitis, N., Miyagawa, I., et al. (1997). Ooplasmic round spermatid nuclear injection procedures as an experimental treatment for nonobstructive azoospermia. J. Assist. Reprod. Genet. 14, 55–62CrossRefGoogle ScholarPubMed
Yazawa, H., Yanagida, K., Katayose, H., Hayashi, S. and Sato, A. (2000). Comparison of oocyte activation and Ca2+ oscillation-inducing abilities of round/elongated spermatids of mouse, hamster, rat, rabbit and human assessed by mouse oocyte activation assay. Hum. Reprod. 15, 2582–90CrossRefGoogle ScholarPubMed
Yovich, J., Edirisinghe, W., Cummins, J. and Yovich, J. (1990). Influence of pentoxifylline in severe male factor infertility. Fertil. Steril. 53, 715–22CrossRefGoogle ScholarPubMed
Zech, H., Vanderzwalmen, P., Prapas, Y., Lejeune, B., Duba, E. and Schoysman, R. (2000). Congenital malformations after intracytoplasmic injection of spermatid. Hum. Reprod. 15, 969–71CrossRefGoogle Scholar
Zhang, J., Wang, C., Krey, L., et al. (1999). In vitro maturation of human preovulatory oocytes reconstructed by germinal vesicle transfer. Fertil. Steril. 71, 726–31CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Steven D. Fleming, University of Sydney, Robert S. King, Eppendorf Inc.
  • Book: Micromanipulation in Assisted Conception
  • Online publication: 10 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545153.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Steven D. Fleming, University of Sydney, Robert S. King, Eppendorf Inc.
  • Book: Micromanipulation in Assisted Conception
  • Online publication: 10 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545153.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Steven D. Fleming, University of Sydney, Robert S. King, Eppendorf Inc.
  • Book: Micromanipulation in Assisted Conception
  • Online publication: 10 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545153.017
Available formats
×