Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T13:28:09.248Z Has data issue: false hasContentIssue false

18 - Infectious diseases in pregnancy

from Section 5 - Other disorders

Published online by Cambridge University Press:  19 October 2009

Gabriela Rocha Lauretti
Affiliation:
Professora Associada (Anestesiologista) Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto Av. Bandeirantes Ribeirão Preto-SP, Brasil
Robert S. F. McKay
Affiliation:
Clinical Professor and Chair, Department of Anesthesiology, University of Kansas, School of Medicine – Wichita, Wichita, KS, USA
David R. Gambling
Affiliation:
University of California, San Diego
M. Joanne Douglas
Affiliation:
University of British Columbia, Vancouver
Robert S. F. McKay
Affiliation:
University of Kansas
Get access

Summary

Bacterial infections

Clinical features: fever and asymptomatic patient

Fever during pregnancy can result from a variety of infections, tissue trauma, malignancy, epidural analgesia, drug administration, and endocrine or immunologic disorders. Infection is the most common cause, reflecting the effect of pyrogens on the hypothalamus. Bacterial infections of the skin, periodontal tissues, respiratory and genitourinary tracts can lead to pregnancy-related complications such as preterm labor, premature rupture of membranes, abortion following pelvic inflammatory disease, chorioamnionitis, neonatal infections, cervicitis, urethritis, ectopic pregnancy, low birthweight, stillbirth, pneumonia, septicemia, and both maternal and neonatal death. Urinary tract bacterial infections usually arise from preexisting covert bacteriuria and experts recommend screening and eradication of these silent infections as routine prenatal practice. Antibiotic treatment during pregnancy is beneficial in reducing neonatal and maternal morbidity/mortality, and most bacterial infections are preventable and treatable. Clindamycin in early pregnancy can reduce the risk of preterm birth by 40–60%. Vaginal bacterial diseases are often asymptomatic and have little impact on management by the obstetric anesthesiologist. The more common bacterial infections and related complications are listed in Table 18.1.

Maternal and fetal implications

The incidence of maternal infection during labor has been estimated to be about 3%. Severe sepsis is less common, however, and presents as the primary problem in < 1% of patients. However, sepsis remains a significant cause of maternal death in underdeveloped countries. In pregnancy, there are decreases in immunoglobulin G levels, lymphocyte count, and impaired lymphocyte activity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuczkowski, K. M. & Reisner, L. S.Anesthetic management of the parturient with fever and infection. J. Clin. Anesth. 2003; 15: 478–88.Google Scholar
Lamont, R. F. & Sawant, S. R.Infection in the prediction and antibiotics in the prevention of spontaneous preterm labour and preterm birth. Minerva Ginecol. 2005; 57: 423–33.Google Scholar
Yeo, B. K., Lim, L. P., Paquette, D. W. & Williams, R. C.Periodontal disease – the emergence of a risk for systemic conditions: pre-term low birth weight. Ann. Acad. Med. Singapore 2005; 34: 111–16.Google Scholar
Sheffield, J. S. & Cunningham, F. G.Urinary tract infection in women. Obstet. Gynecol. 2005; 106: 1085–92.CrossRefGoogle Scholar
Rouse, D. J., Goldenberg, R. L., Cliver, S. P.et al. Strategies for the prevention of early-onset neonatal group B streptococcal sepsis: a decision analysis. Obstet. Gynecol. 1994; 83: 483–94.CrossRefGoogle Scholar
Wakimoto, H., Yano, H., Baba, S.et al. Prevention of vertical transmission of Group B Streptococcus. Kansenshogaku Zasshi 2005; 79: 549–55.Google Scholar
Headley, J., Northstone, K., Simmons, H. & Golding, J.ALSPAC Study Team. Medication use during pregnancy: data from the Avon Longitudinal Study of Parents and Children. Eur. J. Clin. Pharmacol. 2004; 60: 355–61.Google Scholar
Mazor, M., Chaim, W., Bar-David, J.et al. Prenatal diagnosis of microbial invasion of the amniotic cavity with Campylobacter coli in preterm labour. Br. J. Obstet. Gynaecol. 1995; 102: 71–2.CrossRefGoogle Scholar
Fredricks, D. N., Fiedler, T. L. & Marrazzo, J. M.Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med. 2005; 353: 1899–911.Google Scholar
Edwards, J. L. & Apicella, M. A.The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 2004; 17: 965–81.Google Scholar
Miller, K. E.Diagnosis and treatment of Chlamydia trachomatis infection. Am. Fam. Physician 2006; 73: 1411–16.Google Scholar
Wu, S., Shen, L. & Liu, G.Study on vertical transmission of Chlamydia trachomatis using PCR and DNA sequencing. Chin. Med. J. (Engl.) 1999; 112: 396–9.Google Scholar
Rahangdale, L.Guerry, S., Bauer, H. M.et al. An observational cohort study of Chlamydia trachomatis treatment in pregnancy. Sex. Transm. Dis. 2006; 33: 106–10.Google Scholar
Sarkar, M., Woodland, C., Koren, G. & Einarson, A.Pregnancy outcome following gestational exposure to azithromycin. BMC Pregnancy Childbirth 2006; 6: 18.Google Scholar
Tollan, A., Sundsfjord, A. & Lindal, S.Perinatal listeriosis. Tiksskr. Nor. Laegeforen. 1992; 112: 1451–2.Google Scholar
Nathan, L., Twickler, D. M., Peters, M. T., Sanchez, P. J. & Wendel, G. D. Jr.Fetal syphilis: correlation of sonographic findings and rabbit infectivity testing of amniotic fluid. J. Ultrasound Med. 1993; 12: 97–101.Google Scholar
Risser, W. L., Bortot, A. T., Benjamins, L. J.et al. The epidemiology of sexually transmitted infections in adolescents. Semin. Pediatr. Infect. Dis. 2005; 16: 160–7.Google Scholar
Ducloy, A. S., Buy, E., Ducloy, J. C.et al. Prediction of maternal infection before performing epidural analgesia of labor. Anesthesiology 1993; 100: A194.Google Scholar
Stevens, D. L.Could nonsteroidal antiinflamatory drugs (NSAIDs) enhance the progression of bacterial infections to toxic shock syndrome? (Hypothesis). Clin. Infect. Dis. 1995; 21: 977–80.Google Scholar
Wong, S. N., Tam, A. Y. & Yuen, K. Y.Campylobacter infection in the neonate: case report and review of the literature. Pediatr. Infect. Dis. J. 1990; 9: 665–9.Google Scholar
Rosenblatt, H. M., Song, L. Y., Nachman, S. A.et al. Pediatric Aids Clinical Trials Group 377 Study Team. Tetanus immunity after diphtheria, tetanus toxoids, and acellular pertussis vaccination in children with clinically stable HIV infection. J. Allergy Clin. Immunol. 2005; 116: 698–703.Google Scholar
Blanco, J. D., Gibbs, R. S. & Castaneda, Y. S.Bacteremia in obstetrics: clinical course. Obstet. Gynecol. 1981; 58: 621–5.Google Scholar
Ledger, W. J.Bacterial infections complicating pregnancy. Clin. Obstet. Gynecol. 1978; 21: 455–75.Google Scholar
Khan, K. S., Wojdyla, D., Say, L., Gulmezoglu, A. M. & Van Look, P. F.WHO analysis of causes of maternal death: a systemic review. Lancet 2006; 367: 1066–74.Google Scholar
Yip, L., McClusky, J. & Sinclair, R.Immunological aspects of pregnancy. Clin. Dermatol. 2006; 24: 84–7.Google Scholar
Gutierrez, G., Gentile, T., Miranda, S. & Margni, R. A.Asymmetric antibodies: a protective arm in pregnancy. Chem. Immunol. Allergy 2005; 89: 158–68.Google Scholar
American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit. Care Med. 1992; 20: 864–74.
Greenberg, L. R. & Moore, T. R.Staphylococcal septicemia and adult respiratory distress syndrome in pregnancy treated with extracorporeal carbon dioxide removal. Obstet. Gynecol. 1995; 86: 657–60.CrossRefGoogle Scholar
Iseri, S. O., Sener, G., Saglam, B.et al. Oxytocin protects against sepsis-induced multiple organ damage: role of neutrophils. J. Surg. Res. 2005; 126: 73–81.Google Scholar
Xiao, H. & Remick, D. G.Correction of perioperative hypothermia decreases experimental sepsis mortality by modulating the inflammatory response. Crit. Care Med. 2005; 33: 161–7.Google Scholar
Reynolds, F., Sharma, S. K. & Seed, P. T.Analgesia in labour and fetal acid-base balance: a meta-analysis comparing epidural with systemic opioid analgesia. B. J. O. G. 2002; 109: 1344–53.Google Scholar
Adolphs, J., Schmidt, D. K., Korsukewitz, I.et al. Effects of thoracic epidural anaesthesia on intestinal microvascular perfusion in a rodent model of normotensive endotoxaemia. Intensive Care Med. 2004; 30: 2094–101.CrossRefGoogle Scholar
Leighton, B. L. & Halpern, S. H.The effects of epidural analgesia on labor, maternal, and neonatal outcomes: a systematic review. Am. J. Obstet. Gynecol. 2002; 186: S69–77.Google Scholar
Alexander, J. M.Epidural analgesia for labor pain and its relationship to fever. Clin. Perinatol. 2005; 32: 777–87.Google Scholar
Goetzl, L., Cohen, A., Frigoletto, F. Jr. et al. Maternal epidural use and neonatal sepsis evaluation in afebrile mothers. Pediatrics 2001; 108: 1099–102.Google Scholar
Suliburk, J. W., Helmer, K. S., Gonzalez, E. A., Robinson, E. K. & Mercer, D. W.Ketamine attenuates liver injury attributed to endotoxemia: role of cyclooxygenase-2. Surgery 2005; 138: 134–40.Google Scholar
Yang, J., Li, W., Duan, M.et al. Large dose ketamine inhibits lipopolysaccharide-induced acute lung injury in rats. Inflamm. Res. 2005; 54: 133–7.Google Scholar
Kao, S. C., Ting, C. K., Cheng, K. W.et al. Desflurane used in a patient with congenital insensitivity to pain with anhidrosis during septic shock. J. Chin. Med. Assoc. 2004; 67: 305–7.Google Scholar
Lozano, F. S., Lopez-Novoa, J. M., Rodriguez, J. M.et al. Exogenous nitric oxide modulates the systemic inflammatory response and improves kidney function after risk-situation abdominal aortic surgery. J. Vasc. Surg. 2005; 42: 129–39.Google Scholar
Kruger, A. M. & Bhagwanjee, S.HIV/AIDS: impact on maternal mortality at the Johannesburg Hospital, South Africa, 1995–2001. Int. J. Obstet. Anesth. 2003; 12: 164–8.Google Scholar
Centers for Disease Control and Prevention. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR 2006; 55: 1–18.
Quinn, T. C., Kline, R. L., Halsey, N.et al. Early diagnosis of perinatal HIV infection by detection of viral-specific Ig-A antibodies. J.A.M.A. 1991; 266: 3439–42.Google Scholar
McIntyre, J.Prevention of mother-to-child transmission of HIV: treatment options. Expert Rev. Anti. Infect. Ther. 2005; 3: 971–80.Google Scholar
Tibaldi, C., Tovo, P. A., Ziarati, N.et al. Asymptomatic women at high risk of vertical HIV-1 transmission to their fetuses. Br. J. Obstet. Gynaecol. 1993; 100: 334–7.CrossRefGoogle Scholar
Weinberg, G. A.The dilemma of postnatal mother-to-child transmission of HIV: to breastfeed or not?Birth 2000; 27: 199–205.Google Scholar
Hartmann, S. U., Berlin, C. M. & Howett, M. K.Alternative modified infant-feeding practices to prevent postnatal transmission of human immunodeficiency virus type 1 through breast milk: past, present, and future. J. Hum. Lact. 2006; 22: 75–88.CrossRefGoogle Scholar
Temmerman, M., Chomba, E. N., Ndinya-Achola, J.et al. Maternal human immunodeficiency virus-1 infection and pregnancy outcome. Obstet. Gynecol. 1994; 83: 495–501.CrossRefGoogle Scholar
Evron, S., Glezerrman, M., Harow, E., Sadan, O. & Ezri, T.Human immunodeficiency virus: anesthetic and obstetric considerations. Anesth. Analg. 2004; 98: 503–11.Google Scholar
Read, J. S. & Newell, M. K.Efficacy and safety of cesarean delivery for prevention of mother-to-child transmission of HIV-1. Cochrane Database Syst. Rev. 2005; 19: CD005479.Google Scholar
Vogt, M. W., Witt, D. J., Craven, D. E.et al. Isolation of HTLV-III/LAV from cervical secretions of women at risk for AIDS. Lancet 1986; 1: 525–7.Google Scholar
Romero, R., Gomez, R., Araneda, H.et al. Cervical mucus inhibits microbial growth: a host defense mechanism to prevent ascending infection in pregnant and non-pregnant women (SPO abstract). Am. J. Obstet. Gynecol. 1993; 312: 57.Google Scholar
Minkoff, H., Burns, D. N., Landesman, S.et al. The relationship of ruptured membranes to vertical transmission of human immunodeficiency virus. Am. J. Obstet. Gynecol. 1995; 173: 585–9.Google Scholar
Goedert, J. J., Duliege, A. M., Amos, C. I., Felton, S. & Biggar, R. J.High risk of HIV-1 infection for first-born twins. Lancet 1991; 338: 1471–5.Google Scholar
American Academy of Neurology AIDS Task Force. Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Neurology 1991; 41: 778–85.
Leger, J. M., Bouche, P., Bolgert, F.et al. The spectrum of polyneuropathies in patients infected with HIV. J. Neurol. Neurosurg. Psych. 1989; 52: 1369–74.Google Scholar
Marshall, D. W., Brey, R. L., Butzin, C. A.et al. CSF changes in a longitudinal study of 124 neurologically normal HIV-1-infected U.S. Air force personnel. J. Acquir. Immune Defic. Syndr. 1991; 4: 777–81.Google Scholar
Schwartz, D. M., Schwartz, T., Cooper, E. & Pullerits, J.Anaesthesia and the child with HIV infection. Can. J. Anaesth. 1991; 38: 626–33.Google Scholar
Miller, L. G., Galpern, W. R., Dunlap, K., Dinarello, C. A. & Turner, T. J.Interleukin-1 augments gamma-aminobutyric acid-A receptor function in brain. Mol. Pharmacol. 1991; 39: 105–8.Google Scholar
Fassoulaki, A. & Desmonts, J. M.Prolonged neuromuscular blockade after a single bolus dose of vecuronium in patients with acquired immunodeficiency syndrome. Anesthesiology 1994; 80: 457–9.Google Scholar
Parry, G. J.Peripheral neuropathies associated with human immunodeficiency virus infection. Ann. Neurol. 1988; 23: S49–53.Google Scholar
Till, M. & MacDonnell, K. B.Myopathy with human immunodeficiency virus type 1 (HIV-1) infection: HIV-1 or zidovudine?Ann. Int. Med. 1990; 113: 492–4.Google Scholar
Shelton, M. J., O'Donnell, A. M. & Morse, G. D.Didanosine. Ann. Pharmacol. Ther. 1992; 26: 660–70.Google Scholar
Markovic, S. N., Knight, P. R. & Murasko, D. M.Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane. Anesthesiology 1993; 78: 700–6.Google Scholar
Squinto, S. P., Mondal, D., Block, A. L. & Prakash, O.Morphine-induced transactivation of HIV-1 LTR inhuman neuroblastoma cells. AIDS Res. Hum. Retroviruses 1990; 6: 1163–8.Google Scholar
Bayer, B. M., Daussin, S., Hernandez, M. & Irvin, L.Morphine inhibition of lymphocyte activity is mediated by an opioid-dependent mechanism. Neuropharmacology 1990; 29: 369–74.Google Scholar
Hu, S., Sheng, W. S., Lokensgard, J. R. & Peterson, P. K.Morphine potentiates HIV-1 gp120-indudced neuronal apoptosis. J. Infect. Dis. 2005; 191: 886–9.Google Scholar
Wang, X., Tan, N., Douglas, S. D.et al. Morphine inhibits CD8 + T cell-mediated, noncytolytic, anti-HIV activity in latently infected immune cells. J. Leukoc. Biol. 2005; 78: 772–6.Google Scholar
Pruett, S. B., Han, Y. C. & Fuchs, B. A.Morphine suppresses primary humoral immune responses by a predominantly indirect mechanism. J. Pharmacol. Exp. Ther. 1992; 262: 923–8.Google Scholar
Sookoian, S.Liver disease and pregnancy: acute viral hepatitis. Ann. Hepatol. 2006; 5: 231–6.Google Scholar
Brown, J. & Corey, L.Maternal genital herpes and gender of offspring. Am. J. Obstet. Gynecol. 1991; 165: 84.Google Scholar
Koutsky, L. A., Stevens, C. E., Holmes, K. K.et al. Underdiagnosis of genital herpes by current clinical and viral-isolation procedures. N. Engl. J. Med. 1992; 326: 1533–9.Google Scholar
Malvy, D., Halioua, B., Lancon, F.et al. Epidemiology of genital herpes simplex virus infections in a community-based sample in France: results of the HERPIMAX study. Sex. Transm. Dis. 2005; 32: 499–505.Google Scholar
Cunningham, A. L., Lee, F. K., Ho, D. W. T.et al. Herpes simplex virus type 2 antibody in patients attending antenatal or STD clinics. Med. J. Aust. 1993; 158: 525–8.Google Scholar
Roberts, S. W., Cox, S. M., Dax, J., Wendel, G. D. Jr. & Leveno, K. J.Genital herpes during pregnancy: no lesions, no cesarean. Obstet. Gynecol. 1995; 85: 261–4.CrossRefGoogle Scholar
Bader, A. M., Camann, W. R. & Datta, S.Anesthesia for cesarean delivery in patients with herpes simples virus type-2 infections. Reg. Anesth. 1990; 15: 261–3.Google Scholar
Whitley, R. J.Herpes simples encephalitis: adolescents and adults. Antiviral Res. 2006; 71: 141–8.CrossRefGoogle Scholar
Dupuis, O, Audibert, F., Fernandez, H. & Frydman, R.Herpes simples virus encephalitis in pregnancy. Obstet. Gynecol. 1999; 94: 810–12.Google Scholar
Berger, S. A., Weinberg, M., Treves, T.et al. Herpes encephalitis during pregnancy: failure of acyclovir and adenine arabinoside to prevent neonatal herpes. Isr. J. Med. Sci. 1986; 22: 41–4.Google Scholar
Crone, L. A., Conly, J. M., Clark, K. M.et al. Recurrent herpes simplex virus labialis and the use of epidural morphine in obstetric patients. Anesth. Analg. 1988; 67: 318–23.Google Scholar
Valley, M. A., Bourke, D. L. & McKenzie, A. M.Recurrence of thoracic and labial herpes simplex virus infection in a patient receiving epidural fentanyl. Anesthesiology 1992; 76: 1056–7.Google Scholar
Davies, P. W., Vallejo, M. C., Shannon, K.T, Amortegui, A. L. & Ramanathan, S.Oral herpes simplex reactivation after intrathecal morphine: a prospective randomized trial in an obstetric population. Anesth. Analg. 2005; 100: 1472–6.Google Scholar
Shen, C-Y., Chang, S. F., Yen, M. S.et al. Cytomegalovirus excretion in pregnant and non-pregnant women. J. Clin. Microbiol. 1993; 31: 1635–6.Google Scholar
Fowler, K. B.Stagno, S., Pass, R. F.et al. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N. Engl. J. Med. 1992; 326: 663–7.Google Scholar
Chow, S. S., Craig, M. E., Jacques, C. F.et al. Correlates of placental infection with cytomegalovirus, parvovirus B19 or human herpes virus 7. J. Med. Virol. 2006; 78: 747–56.Google Scholar
Grose, C., Meehan, T. & Weiner, C. P.Prenatal diagnosis of congenital cytomegalovirus infection by virus isolation after amniocentesis. Pediatr. Infect. Dis. J. 1992; 11: 605–7.Google Scholar
Huang, E. S., Alford, C. A., Reynolds, D. W., Stagno, S. & Pass, R. F.Molecular epidemiology of cytomegalovirus infection in women and their infants. N. Engl. J. Med. 1980; 303: 958–62.Google Scholar
Meier, J., Lienicke, U., Tschirch, E.et al. Human cytomegalovirus reactivation during lactation and mother-to-child transmission in preterm infants. J. Clin. Microbiol. 2005; 43: 1318–24.Google Scholar
Nigro, G., Adler, S. P., Torre, R.et al. Passive immunization during pregnancy for congenital cytomegalovirus infection. N. Engl. J. Med. 2005; 353: 1350–62.Google Scholar
Berger, J. R. & Sabet, A.Infectious myelopathies. Semin. Neurol. 2002; 22: 133–42.Google Scholar
Doorbar, J.Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. (Lond.) 2006; 110: 525–41.Google Scholar
Lowy, D. R. & Schiller, J. T.Prophylactic human papillomavirus vaccines. J. Clin. Invest. 2006; 116: 1167–73.CrossRefGoogle Scholar
Lehnen, H.Condylomata acuminata and mode of delivery. Z. Geburtshilfe Perinatol. 1988; 192: 96–9.Google Scholar
Cook, T. A., Cohn, A. M., Brunschwig, J. P., Butel, J. S. & Rawls, W. E.Wart-viruses and laryngeal papillomas. Lancet 1973; 1: 782.Google Scholar
Silverberg, M. J., Thorsen, P., Lindeberg, H., Grant, L. A. & Shah, K. V.Condyloma in pregnancy is strongly predictive of juvenile-onset recurrent respiratory papillomatosis. Obstet. Gynecol. 2003; 101: 645–52.Google Scholar
Ferenczy, A., Bergeron, C. & Richart, R. M.Human papillomavirus DNA in CO2 laser-generated plume of smoke and its consequences to the surgeon. Obstet. Gynecol. 1990; 75: 114–18.Google Scholar
Straus, S. E., Ostrove, J. M., Inchauspe, G.et al. NIH Conference: Varicella-zoster virus infections. Biology, natural history, treatment, and prevention. Ann. Intern. Med. 1988; 108: 221–37.Google Scholar
Balducci, J., Rodis, J. F., Rosengren, S.et al. Pregnancy outcome following first-trimester varicella infection. Obstet. Gynecol. 1992; 79: 5–6.Google Scholar
Brazin, S. A., Simkovich, J. W. & Johnson, W. T.Herpes zoster during pregnancy. Obstet. Gynecol. 1979; 53: 175–81.Google Scholar
Harris, R. E. & Rhoades, E. R.Varicella pneumonia complicating pregnancy: report of a case and review of literature. Obstet. Gynecol. 1965; 25: 734–40.Google Scholar
Brunell, P. A.Varicella in pregnancy. The fetus, and the newborn: problems in management. J. Infect. Dis. 1992; 166: S42–7.Google Scholar
Harger, J. H., Ernest, J. M., Thurnau, G. R.et al. Frequency of congenital varicella syndrome in a prospective cohort of 347 pregnant women. Obstet. Gynecol. 2002; 100: 260–5.Google Scholar
Brown, N. W., Parsons, A. P. & Kam, P. C.Anesthetic considerations in a parturient with varicella presenting for Caesarean section. Anaesthesia 2003; 58: 1092–5.Google Scholar
Harger, J. H., Ernest, J. M., Thurnau, G. R.et al. Risk factors and outcomes of varicella viral pneumonia in pregnant women. J. Infect. Dis. 2002; 185: 422–7.Google Scholar
Advances in global measles control and elimination: summary of the 1997 international meeting. M. M. W. R. Recomm. Rep. 1998; 47: 1–23.
Strebel, P., Cochi, S., Grabowsky, M.et al. The unfinished measles immunization agenda. J. Infect. Dis. 2003; 187: S1–7.Google Scholar
Eberhart-Phillips, J. E., Frederick, P. D., Baron, R. C. & Mascola, L.Measles in pregnancy: a descriptive study of 58 cases. Obstet. Gynecol. 1993; 82: 797–801.Google Scholar
Chiba, M. E., Saito, M., Suzuki, N., Honda, Y. & Yaegashi, N.Measles infection in pregnancy. J. Infect. 2003; 47: 40–4.Google Scholar
Signore, C.Rubeola. Prim. Care Update Ob. Gyn. 2001; 8: 138–40.Google Scholar
Bembenek, A.Could the fetus' exposure to influenza increase the risk of schizophrenia in adult life? Psychiatr. Pol. 2005; 39: 271–83.Google Scholar
Smith, G. J., Naipospos, T. S., Nguyen, T. D.et al. Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology 2006; 350: 258–68.Google Scholar
Rodis, J. F., Quinn, D. L., Gary, G. W. Jr. et al. Management and outcomes of pregnancies complicated by human B19 parvovirus infection: a prospective study. Am. J. Obstet. Gynecol. 1990; 163: 1168–71.Google Scholar
Ergaz, Z. & Ornoy, A.Parvovirus B19 in pregnancy. Reprod. Toxicol. 2006; 21: 421–35.Google Scholar
Mead, B. P.Parvovirus B19 infection and pregnancy. Contemp. Obstet. Gynecol. 1989; 9: 56.Google Scholar
Carlson, D. E., Platt, L. D., Medearis, A. L. & Horenstein, J.Prognostic indicators of the resolution of nonimmune hydrops fetalis and survival of the fetus. Am. J. Obstet. Gynecol. 1990; 163: 1785–7.Google Scholar
Simpson, J. L., Elias, S., Morgan, C. D.et al. Does unexplained second-trimester (15 to 20 weeks' gestation) maternal serum α-fetoprotein elevation presage adverse perinatal outcome? Pitfalls and preliminary studies with late second- and third- trimester maternal serum α-fetoprotein. Am. J. Obstet. Gynecol. 1991; 164: 829–36.Google Scholar
Peters, M. & Nicolaides, K.Cordocentesis for the diagnosis and treatment of human fetal parvovirus infection. Obstet. Gynecol. 1990; 75: 501–4.Google Scholar
Naides, S. J. & Weiner, C. P.Antenatal diagnosis and palliative treatment of nonimmune hydrops fetalis secondary to fetal parvovirus B19 infection. Prenat. Diagn. 1989; 9: 105–14.Google Scholar
Humphrey, W., Magoon, M. & O'Shaughnessy, R.Severe non-immune hydrops secondary to parvovirus B19 infection: spontaneous reversal in utero and survival of a term infant. Obstet. Gynecol. 1991; 78: 900–2.Google Scholar
Hwa, H. L., Shyu, M. K., Lee, C. N.et al. Prenatal diagnosis of congenital rubella in Tawain. Obstet. Gynecol. 1994; 84: 415–19.Google Scholar
Gyorkos, T. W., Beliveau, C., Rahme, E.et al. High rubella seronegativity in daycare educators. Clin. Invest. Med. 2005; 28: 105–11.Google Scholar
Ueno, Y.Rubella arthritis. An outbreak in Kyoto. J. Rheumatol. 1994; 21: 874–6.Google Scholar
Ksiazek, T. G., Peters, C. J., Rollin, P. E.et al. Identification of a new North American hantavirus that causes acute pulmonary insufficiency. Am. J. Trop. Med. Hyg. 1995; 52: 117–23.Google Scholar
Ma, R. M., Xiao, H., Jing, X. T. & Lao, T. T.Hemorrhagic fever with renal syndrome presenting with intrauterine fetal death. A case report. J. Reprod. Med. 2003; 48: 661–4.Google Scholar
Gilson, G. J., Maciulla, J. A., Nevils, B. G.et al. Hantavirus pulmonary syndrome complicating pregnancy. Am. J. Obstet. Gynecol. 1994; 171: 550–4.Google Scholar
Howard, M. J., Doyle, T. J., Koster, F. T.et al. Hantavirus pulmonary syndrome in pregnancy. Clin. Infect. Dis. 1999; 29: 1538–44.Google Scholar
Martinez, V. P., Bellomo, C., San Juan, J.et al. Person-to-person transmission of Andes virus. Emerg. Infect. Dis. 2005; 11: 1848–53.Google Scholar
Busch, M. P., Wright, D. J., Custer, B.et al. West Nile virus infections projected from blood donor screening data, United States, 2003. Emerg. Infect. Dis. 2006; 12: 395–402.Google Scholar
Scupski, D. W., Eglinton, G. S., Fine, A. D., Hayes, E. B. & O'Leary, D. R.West Nile virus during pregnancy: a case study of early second trimester maternal infection. Fetal Diagn. Ther. 2006; 21: 293–5.Google Scholar
Paisley, J. E., Hinckley, A. F., O'Leary, D. R.et al. West Nile virus infection among pregnant women in a northern Colorado community, 2003 to 2004. Pediatrics 2006; 17: 814–20.Google Scholar
Alpert, S. G., Fergerson, J. & Noel, L. P.Intrauterine West Nile virus: ocular and systemic findings. Am. J. Ophthalmol. 2003; 136: 733–5.Google Scholar
Fleischauer, A. T., Kile, J. C., Davidson, M.et al. Evaluation of human-to-human transmission of monkeypox from infected patients to health care workers. Clin. Infect. Dis. 2005; 40: 689–94.Google Scholar
Learned, L. A., Reynolds, M. G., Wassa, D. W.et al. Extended interhuman transmission of monkeypox in a hospital community in the Republic of the Congo, 2003. Am. J. Trop. Med. Hyg. 2005; 73: 428–34.Google Scholar
Yudin, M. H., Steele, D. M., Sgro, M. D.et al. Severe acute respiratory syndrome in pregnancyObstet. Gynecol. 2005; 105: 124–7.CrossRefGoogle Scholar
Wong, S. F., Chow, K. M., Leung, T. N.et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am. J. Obstet. Gynecol. 2004; 191: 292–7.Google Scholar
Lam, C. M., Wong, S. F., Leung, T. N.et al. A case-controlled study comparing clinical course and outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome. B.J.O.G. 2004; 111: 771–4.Google Scholar
Owolabi, T. & Kwolek, S.Managing obstetrical patients during severe acute respiratory syndrome outbreak. J. Obstet. Gynaecol. Can. 2004; 26: 35–41.Google Scholar
Guzman, M. G. & Kouri, G.Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges. J. Clin. Virol. 2003; 27: 1–13.Google Scholar
Stephenson, J. R.Understanding dengue pathogenesis: implications for vaccine design. Bull. World Health Organ. 2005; 83: 308–14.Google Scholar
Takada, A., Feldmann, H., Ksiazek, T. G. & Kawaoka, Y.Antibody-dependent enhancement of Ebola virus infection. J. Virol. 2003; 77: 7539–44.CrossRefGoogle Scholar
Morens, D. M.Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin. Infect. Dis. 1994; 19: 500–12.Google Scholar
Rodriguez-Figueroa, L., Rigau-Perez, J. G., Suarez, E. L. & Reiter, P.Risk factors for dengue infection during an outbreak in Yanes, Puerto Rico in 1991. Am. J. Trop. Med. Hyg. 1995; 52: 496–502.Google Scholar
Hoeck, P. A., Ramberg, F. B., Merrill, S. A., Moll, C. & Hagedorn, H. H.Population and parity levels of Aedes aegypti collected in Tucson. J. Vector Ecol. 2003; 28: 65–73.Google Scholar
Secretaria do Estado da Saúde – Centro de Vigilância Epidemiológica “Prof. Alexandre Vranjac”. Manual Sobre Dengue. 1994.
Liam, C. K., Yap, B. H. & Lam, S. K.Dengue fever complicated by pulmonary haemorrhage manifesting as haemoptysis. J. Trop. Med. Hyg. 1993; 96: 197–200.Google Scholar
Halstead, S. B., Porterfield, J. S. & O'Rourke, E. J.Enhancement of dengue virus infection in monocytes by flavivirus antisera. Am. J. Trop. Med. Hyg. 1980; 29: 638–42.Google Scholar
Chang, D. M. & Shaio, M. F.Production of interleukin-1 (IL-1) and IL-1 inhibitor by human monocytes exposed to dengue virus. J. Infect. Dis. 1994; 170: 811–17.Google Scholar
Chungue, E., Burucoa, C., Boutin, J. P.et al. Dengue 1 epidemic in French Polynesia, 1988–1989: surveillance and clinical, epidemiological, virological and serological findings in 1752 documented clinical cases. Trans. Royal Soc. Trop. Med. Hyg. 1992; 86: 193–7.Google Scholar
Chong, K. Y. & Lin, K. C.A preliminary report of the fetal effects of dengue infection in pregnancy. Gaoxiong Yi Xue Ke Xue Za Zhi 1989; 5: 31–4.Google Scholar
Carles, G., Talarmin, A., Peneau, C. & Bertsch, M.Dengue fever and pregnancy. A study of 38 cases in French Guiana. J. Gynecol. Obstet. Biol. Reprod. 2000; 29: 758–62.Google Scholar
Restrepo, B. N., Isaza, D. M., Salazar, C. L.et al. Prenatal and postnatal effects of dengue infection during pregnancy. Biomedica 2003; 23: 416–23.Google Scholar
Costa, S. M., Freire, M. S. & Alves, A. M.DNA vaccine against the non-structural 1 protein (NS1) of dengue 2 virus. Vaccine 2006; 24: 4562–4.Google Scholar
Watanaveeradej, V., Endy, T. P., Samakoses, R.et al. Transplacentally transferred maternal-infant antibodies to dengue virus. Am. J. Trop. Med. Hyg. 2003; 69: 123–8.Google Scholar
Chye, J. K., Lim, C. T., Ng, K. B.et al. Vertical transmission of dengue. Clin. Infect. Dis. 1997; 25: 1374–7.Google Scholar
Ferreira, M. L., Cavalcanti, C. G., Coelho, C. A. & Mesquita, S. D.Neurological manifestations of dengue: study of 41 cases. Arq. Neuropsiquiatr. 2005; 63: 488–93.CrossRefGoogle Scholar
Cetron, M. S., Marfin, A. A., Julian, K. G.et al. Yellow fever vaccine. Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2002. M.M.W.R. Recomm. Rep. 2002; 51: 1–11.Google Scholar
Cock, K. M., Monath, T. P., Nasidi, A.et al. Epidemic yellow fever in eastern Nigeria. Lancet 1988; 1: 630–3.Google Scholar
Russell, M. N., Cetron, M. S. & Eidex, R B.The U. S.-certified yellow fever vaccination center registry: a tool for travelers, state health departments, and vaccine providers. J. Travel Med. 2006; 13: 48–9.CrossRefGoogle Scholar
Nishioka Sde, A., Nunes-Araujo, F. R., Pires, W. P., Silva, F. A. & Costa, H. L.Yellow fever vaccination during pregnancy and spontaneous abortion: a case-control study. Trop. Med. Int. Health 1998; 3: 29–33.Google Scholar
Tsai, T. F., Paul, R., Lynberg, M. C. & Letson, G. W.Congenital yellow fever infections after immunization in pregnancy. J. Infect. Dis. 1993; 168: 1520–3.Google Scholar
Suzano, C. E., Amaral, E., Sato, H. K. & Papaiordanou, P. M.Campinas group on yellow fever immunization during pregnancy. The effects of yellow fever immunization (17DD) inadvertently used in early pregnancy during a mass campaign in Brazil. Vaccine 2005; 24: 1421–6.Google Scholar
Centers for Disease Control and Prevention. Leptospirosis. www.cdc.gov/ncidod/dbmd/diseaseinfo/lepto spirosis_g.htm. 2005 Oct 12. Accessed June 2006.
Rodriguez-Gonzalez, I., Fillonneau, C., Blanchet, B.et al. Efficacy of Spirolept vaccine against human leptospirosis as estimated by passive protection of laboratory rodents. Med. Mal. Infect. 2004; 34: 196–200.Google Scholar
John, T. J.The prevention and control of human leptospirosis. J. Postgrad. Med. 2005; 51: 205–9.Google Scholar
Doudier, B., Garcia, S., Quennee, V., Jarno, P. & Brouqui, P.Prognostic factors associated with severe leptospirosis. Clin. Microbiol. Infect. 2006; 12: 299–300.Google Scholar
Tramoni, G., Clement, H. J., Lopez, F. & Viale, J. P.An unusual case of post partum haemorrhage: leptospirosis infection. Ann. Fr. Anesth. Reanim. 2003; 22: 363–5.Google Scholar
Centers for Disease Control and Prevention (CDC). Malaria. www.cdc.gov/malaria/facts.htm. May 4, 2004.
White, N. J., Chapman, D. & Watt, G.The effects of multiplication and synchronicity on the vascular distribution of parasites in falciparum malaria. Trans. Royal Soc. Trop. Med. Hyg. 1992; 86: 590–7.Google Scholar
Brown, A. E., Herrington, D. A., Webster, H. K.et al. Urinary neopterin in volunteers experimentally infected with Plasmodium falciparum. Trans. Royal Soc. Trop. Med. Hyg. 1992; 86: 134–6.Google Scholar
White, N. J., Warrell, D. A., Chanthavanish, P.et al. Severe hypoglycemia and hyperinsulinemia in falciparum malaria. N. Engl. J. Med. 1983; 309: 61–6.Google Scholar
Davis, T. M. E., Garcia-Webb, P., Fu, L. C.et al. Antioxidant vitamins in acute malaria. Trans. Royal Soc. Trop. Med. Hyg. 1994; 87: 596–7.Google Scholar
Nosten, F., Ter Kuile, F., Thwai, K. L., Maelankirri, L. & White, N. J.Spiramycin does not potentiate quinine treatment of falciparum malaria in pregnancy. Trans. Royal Soc. Trop. Med. Hyg. 1993; 87: 305–6.Google Scholar
Na Bangchang, K., Davis, T. M. E., Looareesuwan, S.et al. Mefloquine pharmacokinetics in pregnant women with acute falciparum malaria. Trans. Royal Soc. Trop. Med. Hyg. 1994; 88: 321–3.Google Scholar
Okoyeh, J. N., Lege-Oguntoye, L., Emembolu, J. O., Sarki, U. & Slotboom, A. B.Sensitivity of Plasmodium falciparum to pyrimethamine in vivo and to sulphadoxine/pyrimethamine combination in vitro in pregnant women of northern Nigeria. J. Trop. Med. Hyg. 1993; 96: 56–9.Google Scholar
Mvondo, J. L., James, M. A., Sulzer, A. J. & Campbell, C. C.Malaria and pregnancy in Cameroonian women. Naturally acquired antibody responses to asexual blood-stage antigens and the circumsporozoite protein of Plasmodium falciparum. Trans. Royal Soc. Trop. Med. Hyg. 1992; 86: 486–90.Google Scholar
Steketee, R. W., Breman, J. G., Paluku, K. M.et al. Malaria infection in pregnant women in Zaire: the effects and potential for intervention. Ann. Trop. Med. Parasitol. 1988; 82: 113–20.Google Scholar
Nosten, F., Vincenti, M., Simpson, J.et al. The effects of mefloquine treatment in pregnancy. Clin. Infect. Dis. 1999; 28: 808–15.Google Scholar
McGready, R., Cho, T., Cho, J. J.et al. Artemisinin derivatives in the treatment of falciparum malaria in pregnancy. Trans. R. Soc. Trop. Med. Hyg. 1998; 92: 430–3.Google Scholar
Centers for Disease Control and Prevention (CDC). Availability and use of parenteral quinidine gluconate for severe or complicated malaria. Morb. Mortal. Wkly. Rep. 2000; 49: 1138–40.
Zucker, J. R. & Campbell, C. C.Malaria. Principles of prevention and treatment. Infect. Dis. Clin. North Am. 1993; 7: 547–67.Google Scholar
Powell, V. I. & Grima, K.Exchange transfusion for malaria and Babesia infection. Transfus. Med. Rev. 2002; 16: 239–50.Google Scholar
Njoku, A. K.Tuberculosis: current trends in diagnosis and treatment. Niger. J. Clin. Pract. 2005; 8: 118–24.Google Scholar
Seidler, A., Nienhaus, A. & Diel, R.Review of epidemiological studies on the occupational risk of tuberculosis in low-incidence areas. Respiration 2005; 72: 431–46.Google Scholar
Reider, H. L., Cauthen, G. M., Comstock, G. W. & Snider, D. E.Epidemiology of tuberculosis in the United States. Epidemiol. Rev. 1989; 11: 79–98.Google Scholar
Centers for Disease Control and Prevention (CDC). Trends in tuberculosis – United States, 2005. Morb. Mortal. Wkly. Rep. 2006; 55: 305–8.
Ong, A., Rudoy, I., Gonzalez, L. C.et al. Tuberculosis in healthcare workers: a molecular epidemiologic study in San Francisco. Infect. Control Hosp. Epidemiol. 2006; 27: 453–8.Google Scholar
Sharma, S. K. & Mohan, A.Scientific basis of directly observed treatment, short-course (DOTS). J. Indian Med. Assoc. 2003; 101: 157–8.Google Scholar
Centers for Disease Control and Prevention (CDC). National Center for HIV, STD, and TB Prevention. Tuberculosis and Pregnancy Fact Sheet. Accessed at www.cdc.gov/nchstp/tb/pubs/tbfactsheets/250160.htm. Updated April 2006.
Steichen, O., Martinez-Almoyna, L. & Broucker, T.Isoniazid induced neuropathy: consider prevention. Rev. Mal. Respir. 2005; 23: 157–60.Google Scholar
Lee, G. S., Kim, S. J., Park, I. Y., Shin, J. C. & Kim, S. P.Tuberculous peritonitis in pregnancy. J. Obstet. Gynaecol. Res. 2005; 31: 436–8.Google Scholar
Jutte, P. & Loenhout-Rooyackers, J.Routine surgery in addition to chemotherapy for treating spinal tuberculosis. Cochrane Database Syst. Rev. 2006; 25: CD004532.Google Scholar
Hassoun, A., Jacquette, G., Huang, A., Anderson, A. & Smith, M. A.Female genital tuberculosis: uncommon presentation of tuberculosis in the United States. Am. J. Med. 2005; 118: 1295–6.CrossRefGoogle Scholar
Morau, E. L., Lotthe, A. A., Morau, D. Y.et al. Bifocal tuberculosis highlighted by obstetric combined spinal–epidural analgesia. Anesthesiology 2005; 103: 445–6.Google Scholar
Ray, V. & Foy, J.Paraspinal abscess associated with epidural in labour. Anaesth. Intensive Care 1998; 26: 424–6.Google Scholar
Lee, B. B., Ngan Kee, W. D. & Griffith, J. F.Vertebral osteomyelitis and psoas muscle abscess occurring after obstetric epidural anesthesia. Reg. Anesth. Pain Med. 2002; 27: 220–4Google Scholar
Centers for Disease Control and Prevention (CDC). Division of Parasitic Diseases. Schistosomiasis Fact Sheet. Accessed at www.cdc.gov/ncidod/dpd/parasites/schistosomiasis/factsht_schistosomiasis.htm Updated August 27, 2004.
Neves, J., Raso, P., Pinto, D. M., da Silva, S. P. & Alvarenga, R. J.Ischaemic colitis (necrotizing colitis, pseudomembranous colitis) in acute shistosomiasis mansoni: report of two cases. Trans. Royal Soc. Trop. Med. Hyg. 1993; 87: 449–52.Google Scholar
Ajanga, A., Lwambo, N. J., Blair, L.et al. Schistosoma mansoni in pregnancy and associations with anaemia in northwest Tanzania. Trans. Royal Soc. Trop. Med. Hyg. 2006; 100: 59–63.Google Scholar
Giboda, M. & Smith, J. M.Schistosoma mansoni eggs as a target for praziquantel: efficacy of oral application in mice. J. Trop. Med. Hyg. 1994; 97: 98–102.Google Scholar
Domingues, A. L., Lima, A. R. F., Dias, H. S., Leao, G. C. & Coutinho, A.An ultrasonographic study of liver fibrosis in patients infected with Schistosoma mansoni in northeast Brazil. Trans. Royal Soc. Trop. Med. Hyg. 1993; 87: 555–8.Google Scholar
Adam, I., Elwasila, E. & Homeida, M.Praziquantel for the treatment of Schistosomiasis mansoni during pregnancy. Ann. Trop. Med. Parasitol. 2005; 99: 37–40.Google Scholar
Olds, G. R.Administration of praziquantel to pregnant and lactating women. Acta Trop. 2003; 86: 185–95.Google Scholar
Shi, Y. E., Johansen, M. V., Li, F. R.et al. An epidemiological investigation of congenital Schistosoma japonicum transmission in Hubei Province, PR China. Southeast Asian J. Trop. Med. Public Health 2001; 32: 323–5.Google Scholar
Centers for Disease Control and Prevention (CDC). Division of Vector-Borne Infectious Diseases. Plague. www.cdc.gov/ncidod/dvbid/plague/facts.htm. Page last reviewed March 20, 2005.
The black death: Bubonic plague. www.themiddleages.net/plague.html.
Nair, G. B., Ramamurthy, T., Bhattacharaya, S. K.et al. Spread of vibrio cholerae O139 Bengal in India. J. Inf. Dis. 1994; 169: 1029–34.Google Scholar
Echeverria, P., Hoge, C. W., Bodhidatta, L.et al. Molecular characterization of vibrio cholerae O139 isolates from Asia. Am. J. Trop. Hyg. 1995; 52: 124–7.Google Scholar
World Health Organization. Cholera. Fact sheet no. 107. Revised March 2000.
Huq, A., Parveen, S., Qadri, F., Sack, D. A. & Colwell, R. R.Comparison of vibrio cholarea serotype O1 strains isolated from patients and the aquatic environment. J. Trop. Med. Hyg. 1993; 96: 86–92.Google Scholar
Mujica, O. J., Quick, R. E., Palacios, A. M.et al. Epidemic cholera in the Amazon: the role of produce in disease risk and prevention. J. Infect. Dis. 1994; 169: 1381–4.Google Scholar
Colwell, R. R., Hasan, J. A., Huq, A.et al. Development and evaluation of a rapid, simple, sensitive, monoclonal antibody-based coagglutination test for direct detection of vibrio cholarea O1. F.E.M.S. Microbiol. Let. 1992; 76: 215–19.Google Scholar
Islam, M. S., Hasan, M. K., Miah, M. A.et al. Specificity of Cholera Screen™ test during an epidemic of cholera-like disease due to Vibrio cholerae O 139 synonym, Bengal. Trans. Royal Soc. Trop. Med. Hyg. 1994; 88: 424–5.Google Scholar
Saha, D., Karim, M. M., Khan, W. A.et al. Single-dose azithromycin for the treatment of cholera in adults. N. Engl. J. Med. 2006; 354: 2452–62.Google Scholar
Guevart, E., Solle, J., Mouangue, A.et al. Antibiotic susceptibility of Vibrio cholerae 01: evolution after prolonged curative and preventive use during the 2004 cholera epidemics in Douala (Cameroon). Med. Mal. Infect. 2006; 36: 329–34.Google Scholar
Lucas, M. E., Deen, J. L., Seidlein, L.et al. Effectiveness of mass oral cholera vaccination in Beira, Mozambique. N. Engl. J. Med. 2005; 352: 757–67.Google Scholar
Hill, D. R., Ford, L. & Lalloo, D. G.Oral cholera vaccines: use in clinical practice. Lancet Infect. Dis. 2006; 6: 361–73.Google Scholar
Guerrant, R. L.Cholera – still teaching hard lessons. N. Engl. J. Med. 2006; 354: 2500–2.Google Scholar
James, T. N., Rossi, M. A. & Yamamoto, S.Postmortem studies of the intertruncal plexus and cardiac conduction system from patients with Chagas disease who died suddenly. Prog. Cardiovasc. Dis. 2005; 47: 258–75.Google Scholar
Rassi, A., Amato Neto, V., Rassi, G. G.et al. A retrospective search for maternal transmission of Chagas infection from patients in the chronic phase. Rev. Soc. Bras. Med. Trop. 2004; 37: 485–9.Google Scholar
Azogue, E.Women and congenital Chagas' disease in Santa Cruz, Bolivia: epidemiological and sociocultural aspects. Soc. Sci. Med. 1993; 37: 503–11.Google Scholar
Gilson, G. J., Harner, K. A., Abrams, J., Izquierdo, L. A. & Curet, L. B.Chagas disease in pregnancy. Obstet. Gynecol. 1995; 86: 646–7.CrossRefGoogle Scholar
Torrico, F., Vega, C. A., Suarez, E.et al. Are maternal re-infections with Trypanosoma cruzi associated with higher morbidity and mortality of congenital Chagas disease?Trop. Med. Int. Health 2006; 11: 628–35.Google Scholar
da Cunha, A. B.Chagas' disease and the involvement of the autonomic nervous system. Rev. Port. Cardiol. 2003; 22: 813–24.Google Scholar
Cardinalli-Neto, A., Greco, O. T. & Bestetti, R. B.Automatic implantable cardioverter-defibrillators in Chagas' heart disease patients with malignant ventricular arrhythmias. Pacing Clin. Electrophysiol. 2006; 29: 467–70.CrossRefGoogle Scholar
Roso Nde, C., Abrao, J. & Alves Neto, J.Etomidate and vecuronium in induction of anesthesia of chronic Chagas' cardiopathy. Rev. Soc. Bras. Med. Trop. 1999; 32: 41–6.Google Scholar
Lessnau, K. D. & Arjomand, F. Psittacosis. www.eMedicine.com/med/topic1951.htm. Last updated May 2, 2006.
Ghermam, R. B., Leventis, L. L. & Miller, R.Chlamydial psittacosis during pregnancy: a case report. Obstet. Gynecol. 1995; 86: 648–50.Google Scholar
Chang, Y. T., Lin, J. Y. & Huang, Y. S.Typhoid colonic perforation in childhood: a ten-year experience. World J. Surg. 2006; 30: 242–7.Google Scholar
Rodriguez, R. E., Valero, V. & Watanakunakorn, C.Salmonella focal intracranial infections: review of the world literature (1884–1984) and report of an unusual case. Rev. Infect. Dis. 1986; 8: 31–41.Google Scholar
Wetering, J., Visser, L. G., Buchem, M. A. & Hoeven, J. G.A case of typhoid fever complicated by unexpected cerebral edema. Clin. Inf. Dis. 1995; 21: 1057–8.Google Scholar
Acharya, G., Butler, T., Ho, M.et al. Treatment of typhoid fever: randomized trial of a three-day course of ceftriaxone versus a fourteen-day course of chloramphenicol. Am. J. Trop. Med. Hyg. 1995; 52: 162–5.Google Scholar
Roll, C., Schmid, E. N., Menken, U. & Hanssler, L.Fatal Salmonella enteritidis sepsis acquired prenatally in a premature infant. Obstet. Gynecol. 1996; 88: 692–3.CrossRefGoogle Scholar
Roizen, N., Swisher, C. N., Stein, M. A.et al. Neurologic and developmental outcome in treated congenital toxoplasmosis. Pediatrics 1995; 95: 11–20.Google Scholar
Figueiro-Filho, E. A., Duarte, G., El-Beitune, P., Quintana, S. M. & Maia, T. L.Visceral leishmaniasis (kala-azar) and pregnancy. Infect. Dis. Obstet. Gynecol. 2004; 12: 31–40.Google Scholar
Meinecke, C. K., Schottelius, J., Oskam, L. & Fleischer, B.Congenital transmission of visceral leishmaniasis (Kala Azar) from an asymptomatic mother to her child. Pediatrics 1999; 105: e65.Google Scholar
Pagliano, P., Carannante, N., Rossi, M.et al. Visceral leishmaniasis in pregnancy: a case series and a systematic review of the literature. J. Antimicrob. Chemother. 2005; 55: 229–33.Google Scholar
Woldehiwet, Z.Q fever (coxiellosis): epidemiology and pathogenesis. Res. Vet. Sci. 2004; 77: 93–100.Google Scholar
Raoult, D., Fenollar, F. & Stein, A. Qfever during pregnancy: diagnosis, treatment and follow-up. Arch. Intern. Med. 2002; 162: 701–4.Google Scholar
Centers for Disease Control and Prevention. Update: management of patients with suspected viral hemorrhagic fever – United States. J.A.M.A. 1995; 274: 374–5.
Centers for Disease Control and Prevention. Update: outbreak of Ebola viral hemorrhagic fever – Zaire, 1995. J. A. M.A. 1995; 274: 373–4.
Boumandouki, P., Formenty, P., Epelboin, A.et al. Clinical management of patients and deceased during the Ebola outbreak from October to December 2003 in Republic of Congo. Bull. Soc. Pathol. Exot. 2005; 98: 218–23.Google Scholar
Eng, R. H. K. & Seligman, S. J.Lumbar puncture-induced meningitis. J.A.M.A. 1981; 245: 1456–9.Google Scholar
Smith, K. M., Deddish, R. B. & Ogata, E. S.Meningitis associated with serial lumbar punctures and post-hemorrhagic hydrocephalus. J. Pediatrics 1986; 109: 1057–60.Google Scholar
Teele, D. W., Dashefsky, B., Rakusan, T. & Klein, J. O.Meningitis after lumbar puncture in children with bacteremia. N. Engl. J. Med. 1981; 305: 1079–81.Google Scholar
Scott, D. B. & Hibbard, B. M.Serious non-fatal complications associated with extradural block in obstetric practice. Br. J. Anaesth. 1990; 64: 537–41.CrossRefGoogle Scholar
Hlavin, M. L., Kaminski, H. J., Ross, J. S. & Ganz, E.Spinal epidural abscess: a ten-year perspective. Neurosurgery 1990; 27: 177–84.Google Scholar
Schreiner, E. J., Lipson, S. F., Bromage, P. R. & Camporesi, E. M.Neurological complications following general anaesthesia. Three cases of major paralysis. Anaesthesia 1983; 38: 226–9.Google Scholar
Jakobsen, K. B., Christensen, M. K. & Carlsson, P. S.Extradural anaesthesia for repeated surgical treatment in the presence of infection. Br. J. Anaesth 1995; 75: 536–40.Google Scholar
Ngan Kee, W. D., Jones, M. R., Thomas, P. & Worth, R. J.Extradural abscess complicating extradural anaesthesia for caesarean section. Br. J. Anaesth. 1992; 69: 647–52.CrossRefGoogle Scholar
Kalaycy, M., Cadavi, F., Altunkaya, H., Gul, S. & Ackgoz, B.Subdural empyema due to spinal anesthesia. Acta Anaesthesiol. Scand. 2005; 49: 426.Google Scholar
Kangwanprasert, M. & Young, R. S.Case report: spinal epidural abscess from Klebsiella pneumoniae. Hawaii Med. J. 2005; 64: 216–17.Google Scholar
Curry, W. T. Jr., Hoh, B. L., Amin-Hanjani, S. & Eskandar, E. N.Spinal epidural abscess: clinical presentation, management, and outcome. Surg. Neurol. 2005; 63: 364–71.Google Scholar
Carp, H. & Bailey, S.The association between meningitis and dural puncture in bacteremic rats. Anesthesiology 1992; 76: 739–42.Google Scholar
Bader, A. M., Gilbertson, L., Kirz, L. & Datta, S.Regional anesthesia in women with chorioamnionitis. Reg. Anesth. 1992; 17: 84–6.Google Scholar
Berman, R. S. & Eisele, J. H.Bacteremia, spinal anesthesia, and development of meningitis. Anesthesiology 1978; 48: 376–7.Google Scholar
Loarie, D. J. & Fairley, H. B.Epidural abscess following spinal anesthesia. Anesth. Analg. 1978; 57: 351–3.Google Scholar
Goodman, E. J., Horta, E. & Taguiam, J. M.Safety of spinal and epidural anesthesia in parturients with chorioamnionitis. Reg. Anesth. 1996; 21: 436–41.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Infectious diseases in pregnancy
    • By Gabriela Rocha Lauretti, Professora Associada (Anestesiologista) Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto Av. Bandeirantes Ribeirão Preto-SP, Brasil, Robert S. F. McKay, Clinical Professor and Chair, Department of Anesthesiology, University of Kansas, School of Medicine – Wichita, Wichita, KS, USA
  • Edited by David R. Gambling, University of California, San Diego, M. Joanne Douglas, University of British Columbia, Vancouver, Robert S. F. McKay, University of Kansas
  • Book: Obstetric Anesthesia and Uncommon Disorders
  • Online publication: 19 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544552.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Infectious diseases in pregnancy
    • By Gabriela Rocha Lauretti, Professora Associada (Anestesiologista) Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto Av. Bandeirantes Ribeirão Preto-SP, Brasil, Robert S. F. McKay, Clinical Professor and Chair, Department of Anesthesiology, University of Kansas, School of Medicine – Wichita, Wichita, KS, USA
  • Edited by David R. Gambling, University of California, San Diego, M. Joanne Douglas, University of British Columbia, Vancouver, Robert S. F. McKay, University of Kansas
  • Book: Obstetric Anesthesia and Uncommon Disorders
  • Online publication: 19 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544552.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Infectious diseases in pregnancy
    • By Gabriela Rocha Lauretti, Professora Associada (Anestesiologista) Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto Av. Bandeirantes Ribeirão Preto-SP, Brasil, Robert S. F. McKay, Clinical Professor and Chair, Department of Anesthesiology, University of Kansas, School of Medicine – Wichita, Wichita, KS, USA
  • Edited by David R. Gambling, University of California, San Diego, M. Joanne Douglas, University of British Columbia, Vancouver, Robert S. F. McKay, University of Kansas
  • Book: Obstetric Anesthesia and Uncommon Disorders
  • Online publication: 19 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544552.019
Available formats
×