Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T20:10:26.543Z Has data issue: false hasContentIssue false

5 - Pharmacogenetics of ethnic populations

Published online by Cambridge University Press:  22 August 2009

Min-Soo Lee
Affiliation:
Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
Rhee-Hun Kang
Affiliation:
Department of Psychiatry, College of Medicine, Korea University, Seoul, Korea
Sang-Woo Hahn
Affiliation:
Department of Psychiatry, College of Medicine, Soonchunhyang University, Seoul, Korea
Chee H. Ng
Affiliation:
University of Melbourne
Keh-Ming Lin
Affiliation:
National Health Research Institutes, Taiwan
Bruce S. Singh
Affiliation:
University of Melbourne
Edmond Y. K. Chiu
Affiliation:
University of Melbourne
Get access

Summary

Introduction

Highly complex mechanisms underlie the variability in drug responses, which can be attributed to several physiological and environmental factors such as age, renal and liver function, nutritional status, smoking, and alcohol consumption. However, it has been established for almost half a century that genetic factors also influence both the efficacy of a drug and the likelihood of adverse reactions (Weinshilboum, 2003). Psychotropic drugs appear to be effective across cultures and ethnicities (Lin, Poland & Nakasaki, 1993, Lin, Tsai, Yu et al. 1999), but it is increasingly recognized that these responses also vary (Lin & Poland, 1995; Poolsup, Li Wan Po & Knight 2000). The discovery of widespread ethnospecific polymorphisms in genes governing pharmacokinetic and pharmacodynamic aspects of psychotropic drugs may explain some of these variations (Lin et al., 1999; Kalow, 1992).

Pharmacodynamic aspects

The term pharmacodynamics encompasses all the processes that influence the relationship between drug concentration and resulting effects. Psychotropic drugs have a wide variety of targets within neurotransmitter systems, including neurotransmitter synthesis, degradation of enzymes, storage, receptors, and specific transporter proteins.

Genetic studies of antidepressants

Serotonin transporter

The brain 5-HT transporter (5-HTT) is the principal site of action of many antidepressants. This transporter takes up 5-HT into the presynaptic neuron, thus terminating synaptic actions, and recycles it into the neurotransmitter pool. Ramamoorthy, Bauman, Moore et al. (1993) identified and cloned a single gene encoding the human 5-HTT, localized to chromosome 17q11.1∼q12, spanning 21 kb, and consisting of 14 exons (Lesch, Balling, Gross et al., 1994).

Type
Chapter
Information
Ethno-psychopharmacology
Advances in Current Practice
, pp. 62 - 86
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amara, S. G. & Kuhar, M. J. (1993). Neurotransmitter transporters: recent progress. Annu. Rev. Neurosci., 16, 73–93.Google Scholar
Arias, B.Catalan, R., Gasto, C., Gutierrez, B. & Fananas, L. (2003). 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J. Clin. Psychopharmacol., 23, 563–7.Google Scholar
Arora, R. C. & Meltzer, H. Y. (1989). Serotonergic measures in the brains of suicide victims: 5-HT(2) binding sites in the frontal cortex of suicide victims and control subjects. Am. J. Psychiatry, 146, 730–6.Google Scholar
Arranz, M. J., Collier, D., Sodhi, M. et al. (1995). Association between clozapine response and allelic variation in 5-HT2A receptor gene. Lancet, 346, 281–2.Google Scholar
Arranz, M. J., Collier, D. A., Munro, J. et al. (1996). Analysis of a structural polymorphism in the 5-HT2A receptor and clinical response to clozapine. Neurosci. Lett. 217, 177–8.Google Scholar
Arranz, M. J., Munro, J., Owen, M. J. et al. (1998). Evidence for association between polymorphisms in the promoter and coding regions of the 5-HT2A receptor gene and response to clozapine. Mol. Psychiatry, 3, 61–6.Google Scholar
Basile, V. S., Ozdemir, V., Masellis, M.et al. (2000). A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol. Psychiatry, 5, 410–17.Google Scholar
Basile, V. S., Masellis, M., Potkin, S. G. & Kennedy, J. L. (2002). Pharmacogenomics in schizophrenia: the quest for individualized therapy. Hum. Mol. Genet., 11, 2517–30.Google Scholar
Benjafield,, A. V., Jeyasingam, C. L., Nyholt, D. R., Griffiths, L. R. & Morris, B. J. (1998). Gprotein beta3 subunit gene (GNB3) variant in causation of essential hypertension. Hypertension, 32, 1094–7.Google Scholar
Bertilsson, L. (1995). Geographical/interracial differences in polymorphic drug oxidation: current state of knowledge of cytochrome P450 (CYP) 2D6 and 2C19. Clin. Pharmacokinet., 29, 192–209.Google Scholar
Bertilsson, L., Lou, Y. Q., Du, Y. L.et al. (1992). Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin. Pharmacol. Ther., 51, 338–97.Google Scholar
Bondy, B. & Zill, , P. (2004). Pharmacogenetics and psychopharmacology. Curr. Opin. Pharmacol. 4(1), 72–8.Google Scholar
Bondy, B., Baghai, T. C., Zill, P.et al. (2002). Combined action of the ACE D- and the G-protein beta3 T-allele in major depression: a possible link to cardiovascular disease?Mol. Psychiatry, 7, 1120–6.Google Scholar
Bonisch, H. & Bruss, M. (1994). The noradrenaline transporter of the neuronal plasma membrane. Ann. N.Y. Acad. Sci., 733, 193–202.Google Scholar
Boularand, S., Darmon, M. C., Ganem, Y., Launay, J. M. & Mallet, J. (1990). Complete coding sequence of human tryptophan hydroxylase. Nucleic Acids Res. 18(14), 4257.Google Scholar
Burnet, P. W., Eastwood, S. L., Lacey, K. & Harrison, P. J. (1995). The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res, 675, 157–68.Google Scholar
Chang, H. W., Yen, C. Y., Liu, S. Y., Singer, G. & I. E., Shih M. (2002). Genotype analysis using human hair shaft. Cancer Epidemiol. Biomarkers Prev. 11, 925–9.Google Scholar
Chen, K., Yang, W., Grimsby, J. & Shih, J. C. (1992). The human 5HT2A receptor is encoded by a multiple intron exon gene. Brain Res. Mol. Brain Res., 14, 20–6.Google Scholar
Choi, M. J., Kang, R. H., Ham, B. J., Jeong, H. Y. & Lee, M. S. (2005). Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology, 52, 155–62.Google Scholar
Craddock, N. & Jones, I. (2001). Molecular genetics of bipolar disorder. Br. J. Psychiatry Suppl., 41, S128–S133.Google Scholar
Craig, S. P., Boularand, S., Darmon, M. C., Mallet, J. & Craig, I. W. (1991). Localization of human tryptophan hydroxylase (TPH) to chromosome 11p15.3-p14 by in situ hybridization. Cytogenet. Cell Genet., 56, 157–9.Google Scholar
Cusin, C., Serretti, A., Zanardi, R.et al. (2002). Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. Int. J. Neuropsychopharmacol., 5, 27–35.Google Scholar
Daniel, H. I. & Edeki, T. I. (1996). Genetic polymorphism of S-mephenytoin 4¢-hydroxylationPsychopharmacol. Bull., 32, 219–30.Google Scholar
DeBellis, M., Geracioti, T. & Altemus, M. (1993). Cerebrospinal fluid monoamine metabolites in fluoxetine treated patients with major depression and in healthy volunteers. Biol. Psychiatry, 33, 636–41.Google Scholar
Morais, S. M., Wilkinson, G. R., Blaisdell, J.et al. (1994). The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem., 269, 15419–22.Google Scholar
Zompo, Del M., Ardau, R., Palmas, M. A.et al. (1999). Lithium response: association study with two candidate genes. Mol. Psychiatry, 4(1), S66–S67.Google Scholar
Dong, Y., Zhu, H., Sagnella, G. A.et al. (1999). Association between the C825T polymorphism of the G protein beta3- subunit gene and hypertension in blacks. Hypertension, 34, 1193–6.Google Scholar
Durham, L. K., Webb, S. M., Milos, P. M., Clary, C. M. & Seymour, A. B. (2004). The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology, 174, 525–9.Google Scholar
Erdmann, J., Shimron-Abarbanell, D., Rietschel, M.et al. (1996). Systematic screening for mutations in the human serotonin-2A (5-HT2A) receptor gene: identification of two naturally occurring receptor variants and association analysis in schizophrenia. Hum. Genet., 97, 614–19.Google Scholar
Ford, C. E., Skiba, N. P., Bae, H.et al. (1998). Molecular basis for interactions of G protein betagamma subunits with effectors. Science, 280, 1271–4.Google Scholar
Glennon, R. A. & Dukat, M. (1995). Serotonin receptor subtypes. In Bloom, F. E. and Kupfer, D. J., eds., Psychopharmacology: The Fourth Generation of Progress. New York, NY: Raven Press, pp. 1125–31.
Goldstein, J. A., Ishizaki, T., Chiba, K.et al. (1997). Frequencies of defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics, 7, 59–64.Google Scholar
Gonzalez, F. J. & Idle, J. R. (1994). Pharmacogenetic phenotyping and genotyping. Present status and future potential. Clin. Pharmacokinet., 26, 59–70.Google Scholar
Grof, P., Alda, M., Grof, E., Zvolsky, P. & Walsh, M. (1994). Lithium response and genetics of affective disorders. J. Affect. Disord., 32, 85–95.Google Scholar
Guttendorf, R. J. & Wedlund, P. J. (1992). Genetic aspects of drug disposition and therapeutics. J. Clin. Pharmacology, 32, 107–17.Google Scholar
Ham, B. J., Lee, M. S., Lee, H. J.et al. (2005). No association between the tryptophan hydroxylase gene polymorphism and major depressive disorders and antidepressants response in a Korean population. Psychiatr. Genet., 15, 299–301.Google Scholar
Hamelin, B. A., Turgeon, J., Vallee, F.et al. (1996). The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin. Pharmacol. Ther., 60, 512–21.Google Scholar
Hamm, H. E. (1998). The many faces of G protein signaling. J. Biol. Chem., 273, 669–72.Google Scholar
Hegele, R. A., Anderson, C., Young, T. K. & Connelly, P. W. (1999).G-protein beta3 subunit gene splice variant and body fat distribution in Nunavut Inuit. Genome Res., 9, 972–7.Google Scholar
Heils, A., Teufel, A., Petri, S.et al. (1996). Allelic variation of human serotonin transporter gene expression. J. Neurochem., 66, 2621–4.Google Scholar
Hengstenberg, C., Schunkert, H., Mayer, B.et al. (2001). Association between a polymorphism in the G protein beta3 subunit gene (GNB3) with arterial hypertension but not with myocardial infarction. Cardiovasc. Res.,49: 820–7.Google Scholar
Hwu, H. G., Hong, C. W., Lee, Y. L. et al. (1998). Dopamine D4 receptor gene polymorphisms and neuroleptic response in schizophrenia. Biol. Psychiatry, 44, 483–7.Google Scholar
Inaba, T., Nebert, D. W., Burchell, B.et al. (1995). Pharmacokinetics in clinical pharmacology and toxicology. Cana. J. Physiol. Pharmacol., 73, 331–8.Google Scholar
Johansson, I., Oscarson, M., Yue, Q. Y.et al. (1994). Genetic analysis of the Chinese cytochrome P-4502D locus: characterization of variant CYP2D6 gene present in subjects with diminished capacity for debrisoquine hydroxylation. Mol. Pharmacol. 46, 452–9.Google Scholar
Joober, R., Benkelfat, C., Brisebois, K. et al. (1999). T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability. J. Psych. Neurosci., 24, 141–6.Google Scholar
Kaiser, R., Konneker, M., Henneken, M. et al. (2000). Dopamine D4 receptor 48-bp repeat polymorphism: no association with response to antipsychotic treatment, but association with catatonic schizophrenia. Mol. Psychiatry, 5, 418–24.Google Scholar
Kalow, W. (1992). Pharmacokinetics of Drug Metabolism. New York, NY: Pergamon.
Kalow, W. & Bertilsson, L. (1994). Interethnic factors affecting drug response. Adv. Drug Res., 25, 1–53.Google Scholar
Kapitany, T., Meszaros, K., Lenzinger, E.et al. (1998). Genetic polymorphisms for drug metabolism (CYP2D6) and tardive dyskinesia in schizophr. Schizophr. Res., 32, 101–6.Google Scholar
Kim, C. H., Kim, H. S., Cubells, J. F., & Kim, K. S. (1999). A previously undescribed intron and extensive 5′upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J. Biol. Chem.,274, 6507–18.Google Scholar
Kim, D. K., Lim, S. W., Lee, S.et al. (2000). Serotonin transporter gene polymorphism and antidepressants response. Neuroreport, 11, 215–19.Google Scholar
Kohen, R.Metcalf, M. A.Khan, N.et al. (1996). Cloning, characterization and chromosomal localization of a human 5-HT6 serotonin receptor. J. Neurochem., 66, 47–56.Google Scholar
Kunugi, H., Kato, T., Fukuda, R.et al. (2002). Association study of C825T polymorphism of the G-protein beta3 subunit gene with schizophrenia and mood disorders. J. Neural Transm. 109, 213–18.Google Scholar
Lake, C. R., Pickar, D., Ziegler, M. G.et al. (1982). High plasma norepinephrine levels in patients with major affective disorder. Am. J. Psychiatry 139, 1315–18.Google Scholar
Lam, L. C. W., Garcia-Barcelo, M. M., Ungvari, G. S.et al. (2001). Cytochrome CYP2D6 genotyping and association with tardive dyskinesia in Chinese schizophrenic patients. Pharmacopsychiatry, 34, 238–41.Google Scholar
Lane, H. Y., Chang, Y. C., Chiu, C. C.et al. (2002). Association of risperidone treatment response with a polymorphism in the 5-HT(2A) receptor gene. Am. J. Psychiatry, 159, 1593–5.Google Scholar
Lee, H. J., Cha, J. H., Ham, B. J.et al. (2004). Association between a G-protein b3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J. 4, 29–33.Google Scholar
Lee, M. S., Lee, H. Y., Lee, H. J. & Ryu, S. H. (2004). Serotonin transporter promoter gene polymorphism and long-term outcome of antidepressants treatment. Psychiatr. Genet., 14, 111–15.Google Scholar
Lee, S. H., Lee, K. J., Lee, H. J.et al. (2005). Association between the 5-HT6 receptor C267T polymorphism and response to antidepressants treatment in major depressive disorder. Psychiatry Clin. Neurosci., 59, 140–5.Google Scholar
Lesch, K. P., Balling, U., Gross, J.et al. (1994).Organization of the human serotonin transporter gene. J. Neural Transm. Gen. Sect., 95, 157–62.Google Scholar
Lesch, K. P., Bengel, D., Heils, A.et al. (1996). Association of anxiety related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–31.Google Scholar
Lin, C. H., Tsai, S. J., Yu, Y. W. et al. (1999). No evidence for association of serotonin-2A receptor variant (102T/C) with schizophrenia or clozapine response in a Chinese population. Neuroreport 10, 57–60.Google Scholar
Lin, C. N., Tsai, S. J. & Hong, C. J. (2001a). Association analysis of a functional G protein beta3 subunit Gene polymorphism (C825T) in mood disorders. Neuropsychobiology, 44, 118–21.Google Scholar
Lin, K. M. (2001b). Biological differences in depression and anxiety across races and ethnic groups, J. Clin. Psychiatry, 62 (13), 13–19.Google Scholar
Lin, K. M. & Cheung, F. (1999). Mental health issues for Asian Americans. Psychiat. Serv., 50, 774–80Google Scholar
Lin K. M. & Poland, R. E. (1995). Ethnicity, culture and psychopharmacology. In Bloom, F. E. & Kupfer, D. I., eds., Psychopharmacology: The Fourth Generation of Progress. New York, NY: Raven, pp.1907–17.
Lin, K. M., Poland, R. E. & Nakasaki, G. (eds.) (1993). Psychopharmacology and Psychobiology of Ethnicity. Washington, DC: American Psychiatric Press.
Lin, K. M.Poland, R. E., Wan, Y-J. Y., Smith, M. W. & Lesser, I. M. (1996). The evolving science of pharmacogenetics: clinical and ethnic perspectives. Psychopharmacol. Bull., 32, 205–17.Google Scholar
Lou, Y. C. (1990). Differences in drug metabolism polymorphism between Orientals and Caucasians. Drug Metab. Rev., 22, 451–75.Google Scholar
Maj, J., Bijak, M., Dziedzicka-Wasylewska, M.et al. (1996).The effects of paroxetine given repeatedly on the 5-HT receptor subpopulations in the rat brain. Psychopharmacology, 127, 73–82.Google Scholar
Malhotra, A., Goldman, D., Ozaki, N. et al. (1996a). Lack of association between polymorphisms in the 5-HT2A receptor gene and the antipsychotic response to clozapine. Am. J. Psychiatry, 153, 1092–4.Google Scholar
Malhotra, A., Goldman, D., Ozaki, N. et al. (1996b). Clozapine response and the 5-HT2C Cys23Ser polymorphism. Neuroreport, 7, 2100–2.Google Scholar
Malhotra, A. K., Goldman, D., Buchanan, R. W.et al. (1998). The dopamine D-3 receptor (DRD3) Ser-9Gly polymorphism and schizophrenia: a haplotype relative risk study and association with clozapine response. Mol. Psychiatry, 3, 72–5.Google Scholar
Masellis, M., Basile, V. S., Ozdemir, V.et al. (2000). Pharmacogenetics of antipsychotic treatment: lessons learned from clozapine. Biol. Psychiatry, 47, 252–66.Google Scholar
Masellis, M., Basile, V. S., Meltzer, H. Y.et al. (2001). Lack of association between the T–>C 267 serotonin 5-HT6 receptor gene (HTR6) polymorphism and prediction of response to clozapine in schizophrenia. Schizophr. Res., 15, 49–58.Google Scholar
Massana, J. (1998). Reboxetine versus fluoxetine: an overview of efficacy and tolerability. J. Clin. Psychiatry, 59(14), 8–10.Google Scholar
Mendlewicz, J., Verbanck, P., Linkowski, P. & Wilmotte, J. (1978).Lithium accumulation in erythrocytes of manic-depressive patients: an in vivo twin study. Br. J. Psychiatry, 133, 436–44.Google Scholar
Meyer, J. H., Kapur, S., Eisfeld, B. & Brown, G. M. (2001). The effect of paroxetine on 5-HT(2A) receptors in depression: an [18F]setoperone PET imaging study. Am. J. Psychiatry, 158, 78–86.Google Scholar
Meyer, U. A. (1994a). The molecular basis of genetic polymorphisms of drug metabolism. J. Pharm. Pharmacol., 46(1), 409–15.Google Scholar
Meyer, U. A. (1994b). Pharmacogenetics: the slow, therapid, and the ultrarapid. Proc. Nat. Acad. Sci. USA, 91, 1983–4.Google Scholar
Meyer, U. A., Zanger, U. M., Grant, D.et al. (1990). Genetic polymorphisms of drug metabolism. Adv. Drug Res., 19, 197–241.Google Scholar
Minov, C., Baghai, T. C., Schule, C.et al. (2001).Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci. Lett., 303, 119–22.Google Scholar
Monsma, F. J. Jr, Shen, Y., Ward, R. P., Hamblin, M. W. & Sibley, D. R. (1993). Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol. Pharmacol., 43, 320–7.Google Scholar
Montgomery, S. A. (1994). Long-term treatment of depression. Br. J. Psychiatry, 26(suppl), 31–6.Google Scholar
Murphy, G. M. Jr, Kremer, C., Rodrigues, H. E. & Schatzberg, A. F. (2003). Pharmacogenetics of antidepressant medication intolerance Am. J. Psychiatry, 160, 1830–5.Google Scholar
Nakamura, K., Goto, F., Ray, W. A.et al. (1985). Interethnic differences in genetic polymorphism of debrisoquine and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin. Pharmacol. Ther., 10, 402–8.Google Scholar
Nielsen, D. A., Jenkins, G. L., Stefanisko, K. M., Jefferson, K. K. & Goldman, D. (1997). Sequence, splice site and population frequency distribution analyses of the polymorphic human tryptophan hydroxylase intron 7. Brain Res. Mol. Brain Res., 45, 145–8.Google Scholar
Nimgaonkar, V. L., Zhang, X. R., Brar, J. S. et al. (1996). 5-HT2 receptor gene locus: association with schizophrenia or treatment response not detected. Psychiatr. Genet., 6, 23–7.Google Scholar
Nöthen, M. M., Rietschel, M., Erd mann, J. et al. (1995). Genetic variation of the 5-HT2A receptor and response to clozapine. Lancet, 346, 908–9.Google Scholar
Owens, M. J. (1997). Molecular and cellular mechanisms of antidepressants drugs. Depress. Anxiety, 4, 153–9.Google Scholar
Phiel, C. J. & Klein, P. S. (2001). Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol., 41, 789–813.Google Scholar
Pickar, D. & Rubinow, K. (2001) Pharmacogenomics of psychiatric disorders. Trends Pharmacol. Sci. 22, 75–83.Google Scholar
Pollock, B. G., Ferrell, R. E., Mulsant, B. H.et al. (2000). Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacol., 23, 587–90.Google Scholar
Poolsup, N., Li Wan Po, A. & Knight, T. L. (2000). Pharmacogenetics and psychopharmacology. J. Clin. Pharm. Ther., 25, 197–200.Google Scholar
Porzgen, P., Bonisch, H. & Bruss, M. (1995). Molecular cloning and organization of the coding region of the human norepinephrine transporter gene. Psychiatry, 26, 1279–83Google Scholar
Ramamoorthy, S., Bauman, A. L., Moore, K. R.et al. (1993). Antidepressants- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc. Natl. Acad. Sci. USA, 90, 2542–6.Google Scholar
Rao, P. A., Packer D., Gejman, P. V. et al. (1994). Allelic variation in the D4 dopamine receptor (DRD4) gene does not predict response to clozapine. Arch. Gen. Psychiatry, 51, 912–17.Google Scholar
Rausch, J. L., Johnson, M. E., Fei, Y. J.et al. (2002). Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol. Psychiatry, 51, 723–32.Google Scholar
Reynolds, G. P., Zhang, Z. & Zhang, X. (2003). Polymorphism of the promoter region of the serotonin 5HT(2C) receptor gene and clozapine induced weight gain. Am. J. Psychiatry, 160, 677–9.Google Scholar
Rietschel, M ., Naber, D., Fimmers, R. et al. (1997). Efficacy and side effects of clozapine not associated with variation in the 5-HT2C receptor. NeuroReport, 8, 1999–2003.Google Scholar
Roh, H. K., Dahl, M. L., Johansson, I.et al. (1996). Debrisoquine and S-mephenytoin hydroxylation phenotypes and genotypes in a Korean population. Pharmacogenetics, 6, 441–7.Google Scholar
Rosskopf, D., Koch, K., Habich, C.et al. (2003). Interaction of Gbeta3s, a splice variant of the G-protein Gbeta3, with Ggamma- and Galpha-proteins. Cell Signal, 15, 479–88.Google Scholar
Roth, B. L., Craigo, S. C., Choudhary, M. S.et al. (1994). Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine- 6 and 5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther., 268, 1403–10.Google Scholar
Roy, A., Pickar, D., Dejong, J., Karoum, F. & Linnoila, M. (1998). Norepinephrine and its metabolites in cerebrospinal fluid, plasma and urine. Relationship to hypothalamic-pituitary-adrenal axis function in depression. Arch. Gen. Psychiatry, 45, 849–57.Google Scholar
Sato, K., Yoshida, K., Takahashi, H.et al. (2002). Association between –1438G/A promoter polymorphism in the 5-HT(2A) receptor gene and fluvoxamine response in Japanese patients with major depressive disorder. Neuropsychobiology, 46, 136–40.Google Scholar
Scates, A. C. & Doraiswamy, P. M. (2000). Reboxetine: a selective norepinephrine reuptake inhibitor for the treatment of depression. Ann. Pharmacother., 34, 1302–12.Google Scholar
Scharfetter, J., Chaudhry, H. R., Hornik, K.et al. (1999). Dopamine D3 receptor gene polymorphism and response to clozapine in schizophrenic Pakistani patients. Eur. Neuropsychopharmacol., 10, 17–20.Google Scholar
Seeman, P. & Vantol, H. H. M. (1994). Dopamine receptor pharmacology. Trends Pharmacol. Sci., 15, 264–70.Google Scholar
Serretti, A., Lilli, R., Lorenzi, C., Franchini, L. & Smeraldi, E. (1998). Dopamine receptor D3 gene and response to lithium prophylaxis in mood disorders. Int. J. Neuropsychopharmacol., 1, 125–9.Google Scholar
Serretti, A., Lilli, R., Lorenzi, C.et al. (1999). Dopamine receptor D2 and D4 genes, GABA(A) alpha- 1 subunit genes and response to lithium prophylaxis in mood disorders. Psychiatry Res., 87, 7–19.Google Scholar
Serretti, A., Lorenzi, C., Lilli, R. & Smeraldi, E. (2000). Serotonin receptor 2A, 2C, 1A genes and response to lithium prophylaxis in mood disorders. J. Psychiatr. Res., 34, 89–98.Google Scholar
Serretti, A., Zanardi, R., Cusin, C.et al. (2001a). Tryptophan hydroxylase gene associated with paroxetine antidepressants activity. Eur. Neuropsychopharmacol., 11, 375–80.Google Scholar
Serretti, A., Zanardi, R., Rossini, D.et al. (2001b). Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressants activity. Mol. Psychiatry, 6, 586–92.Google Scholar
Serretti, A., Lorenzi, C., Cusin, C.et al. (2003). SSRIs antidepressants activity is influenced by Gbeta3 variants. Eur. Neuropsychopharmacol., 13, 117–22.Google Scholar
Serretti, A., Malitas, P. N., Mandelli, L.et al. (2004). Further evidence for a possible association between serotonin transporter gene and lithium prophylaxis in mood disorders. Pharmacogenomics J., 4(4), 267–73.Google Scholar
Shaikh, S., Collier, D. A., Sham, P. et al. (1995). Analysis of clozapine response and polymorphisms of the dopamine D4 receptor gene (DRD4) in schizophrenic patients. Am. J. Med. Genet., 60, 541–5.Google Scholar
Shaikh, S., Collier, D. A., Sham, P. C. et al. (1996). Allelic association between a Ser-9-Gly polymorphism in the dopamine D3 receptor gene and schizophrenia. Hum. Genet., 97, 714–19.Google Scholar
Shaldubina, A., Agam, G. & Belmaker, R. H. (2001). The mechanism of lithium action: state of the art, ten years later. Prog. Neuropsychopharmacol. Biol. Psychiatry, 25, 855–66.Google Scholar
Siffert, W. (2003). G-protein beta3 subunit 825T allele and hypertension. Curr. Hypertens. Rep., 5, 47–53.Google Scholar
Siffert, W., Rosskopf, D., Siffert, G.et al. (1998). Association of a human G protein beta3 subunit variant with hypertension. Nat. Genet., 18, 45–8.Google Scholar
Siffert, W., Forster, P., Jockel, K. H.et al. (1999). Worldwide ethnic distribution of the G protein beta3 subunit 825T allele and its association with obesity in Caucasian, Chinese, and Black African individuals. J. Am. Soc. Nephrol., 10, 1921–30.Google Scholar
Skrebuhhova, T., Allikmets, L. & Matto, V. (1999). 5-HT2A receptors mediate the effects of antidepressants in the elevated plus-maze test but have a partial role in the forced swim test. Med. Sci. Res., 27, 277–80.Google Scholar
Sleight, A. J., Boess, F. G., Bos, M. & Bourson, A. (1998). The putative 5-ht6 receptor: localization and function. Ann. N.Y. Acad. Sci., 861, 91–6.Google Scholar
Smeraldi, E., Zanardi, R. & Benedetti, F. (1998). Polymorphism within the promoter of the serotonin transporter gene and antidepressants efficacy of fluvoxamine. Mol. Psychiatry, 3, 508–11.Google Scholar
Smeraldi, E., Benedetti, F. & Zanardi, R. (2002). Serotonin transporter promoter genotype and illness recurrence in mood disorders. Eur. Neuropsychopharmacol. 12, 73–5.Google Scholar
Smith, M. W. & Mendoza, R. P. (1996). Ethnicity and pharmacogenetics. Mt. Sinai. J. Med., 63, 285–90.Google Scholar
Sodhi, M. S., Arranz, M. J., Curtis, D. et al. (1995). Association between clozapine response and allelic variation in the 5-HT2C receptor gene. Neuroreport, 7, 169–72.Google Scholar
Spurlock, G., , Helis, A., Holmas, P.et al. (1998). A family based association study of T 102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol. Psychiatry, 3, 42–9.Google Scholar
Szot, P., Ashliegh, E. A., Kohen, R., et al. (1993). Norepinephrine transporter mRNA is elevated in the locus coeruleus following short- and long-term desipramine treatment. Brain Res., 618, 308–12.Google Scholar
Turecki, G., Grof, P., Grof, E.et al. (2001). Mapping susceptibility genes for bipolar disorder: a pharmacogenetic approach based on excellent response to lithium. Mol. Psychiatry, 6, 570–8.Google Scholar
Veith, R. C., Lewis, N., Linares, O. A.et al. (1994). Sympathetic nervous system activity in major depression. Arch. Gen. Psychiatry, 51, 411–22.Google Scholar
Virchow, S., Ansorge, N., Rosskopf, D., Rubben, H. & Siffert, W. (1999). The G protein beta3 subunit splice variant Gbeta3-s causes enhanced chemotaxis of human neutrophils in response to interleukin-8. Naunyn- Schmiedeberg's Arch. Pharmacol., 360, 27–32.Google Scholar
Vogt, I. R., Shimron-Abarbanell, D., Neidt, H.et al. (2000). Investigation of the human serotonin 6 [5HT6] receptor gene in bipolar affective disorder and schizophrenia. Am. J. Med. Genet., 96, 217–21.Google Scholar
Wang, J. H., Liu, Z. Q., Wang, W . et al. (2001). Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin. Pharmacol. Ther., 70, 42–7.Google Scholar
Ward, R. P., Hamblin, M. W., Lachowicz, J. E.et al. (1995). Localization of serotonin subtype 6 receptor messenger RNA in the rat brain by in situ hybridization histochemistry. Neuroscience, 64, 1105–11.Google Scholar
Weinshilboum, R. (2003). Inheritance and drug response. N. Engl. J. Med., 384, 529–37.Google Scholar
Wu, W. H., Huo, S. J., Cheng, C. Y., Hong, C. J. & Tsai, S. J. (2001). Association study of the 5-HT (6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology, 44, 172–5.Google Scholar
Yates, M., Leake, A., Candy, J. M.et al. (1990). 5HT2 receptor changes in major depression. Biol. Psychiatry, 27, 489–96.Google Scholar
Yatham, L. N., Liddle, P. F. & Dennie, J. (1999). Decrease in brain serotonin 2 receptor binding in patients with major depression following desipramine treatment: a positron emission tomography study with fluorine-18-labeled setoperone. Arch. Gen. Psychiatry, 56, 705–11.Google Scholar
Yoshida, K., Ito, K., Sato, K.et al. (2002a). Influence of the serotonin transporter gene-linked polymorphic region on the antidepressants response to fluvoxamine in Japanese depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 26, 383–6.Google Scholar
Yoshida, K., Naito, S., Takahashi, H.et al. (2002b). Monoamine oxidase: a gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressants response to fluvoxamine in Japanese patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 26, 1279–83.Google Scholar
Yoshida, K., Takahashi, H., Higuchi, H.et al. (2004). Prediction of antidepressants response to milnacipran by norepinephrine transporter gene polymorphisms. Am. J. Psychiatry, 161(9), 1575–80.Google Scholar
Yoshioka, M., Matsumoto, M., Togashi, H. & Mori, K. (1998). Central distribution and function of 5-HT6 receptor subtype in the rat brain. Ann. N.Y. Acad. Sci., 861, 244.Google Scholar
Yu, Y. W., Tsai, S. J., Lin, C. H. et al. (1999). Serotonin-6 receptor variant (C267T) and clinical response to clozapine. Neuroreport, 10, 1231–3.Google Scholar
Yu, Y. W., Tsai, S. J., Chen, T. J., Lin, C. H. & Hong, C. J. (2002). Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressants response in major depressive disorders. Mol. Psychiatry, 7, 1115–19.Google Scholar
Zanardi, R., Benedetti, F., Di Bella, D., Catalano, M. & Smeraldi, E. (2000). Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J. Clin. Psychopharmacol., 20, 105–7.Google Scholar
Zill, P., Baghai, T. C., Zwanzger, P.et al. (2000). Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressants treatment. Neuroreport, 11, 1893–7.Google Scholar
Zill, P., Engel, R., Baghai, T. C.et al. (2002). Identification of a naturally occurring polymorphism in the promoter region of the norepinephrine transporter and analysis in major depression. Neuropsychopharmacol., 26, 489–93.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×