Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T15:49:04.073Z Has data issue: false hasContentIssue false

3 - Statistical applications in dental anthropology

Published online by Cambridge University Press:  12 September 2009

Edward F. Harris
Affiliation:
Department of Orthodontics, College of Dentistry, The Health Science Center University of Tennessee, Memphis, Tennessee 38163, USA
Joel D. Irish
Affiliation:
University of Alaska, Fairbanks
Greg C. Nelson
Affiliation:
University of Oregon
Get access

Summary

Introduction

Statistical methods have become a mainstay in physical anthropology – and a working knowledge of statistics is as necessary in dental anthropology as in any other aspect of the field. It may seem odd to have a chapter on statistics in a book discussing advances in dental anthropology. Statistics are tools – they are means of investigating questions – not ends in themselves, and they should not drive or limit the research. Also, there are no “dental” statistics; we are dealing with the same descriptive and inferential methods used in other areas of physical anthropology and in biology generally. On the other hand, access to and familiarity with statistical methods are two essentially separate issues that have molded, and continue to influence, the development of dental anthropology, as demonstrated elsewhere in this volume.

This is not the first effort at characterizing the use of statistics in dental anthropology, and I will mention just a few key precedents. Going back a good ways, Wilder (1920) provided a rudimentary introduction to descriptive statistics in his manual on anthropometry; however, this was readily surpassed by Rudolf Martin's (1928) classic three-volume work “Lehrbuch der Anthropology,” that has a 49-page chapter on statistical methods. Martin's review was meant for all physical anthropology, with no specific mention of teeth in this chapter. The mean and measures of dispersion were described, along with the two-sample (group comparison) t-test, and Karl Pearson's correlation coefficient.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, I. H. (1979). The depth of the lingual fossa in permanent maxillary incisors of Norwegian Lapps. American Journal of Physical Anthropology, 51, 417–19Google ScholarPubMed
Adams, M. S. and Niswander, J. D. (1967). Developmental “noise” and a congenital malformation. Genetics Research, 10, 313–17CrossRefGoogle Scholar
Alt, K. W., Riemensperger, B., Vach, W., and Krekeler, G. (1998). Tooth root length and tooth neck diameter as indicators in sex determination of human teeth. Anthropologischer Anzeiger 56, 131–44 [in German]Google ScholarPubMed
Anderson, D. L., Thompson, G. W., and Popovich, F. (1976). Age of attainment of mineralization stages of the permanent dentition. Journal of Forensic Science, 21, 191–200CrossRefGoogle ScholarPubMed
Ash, M. M. (1984). Wheeler's Dental Anatomy, Physiology, and Occlusion. Philadelphia: W. B. Saunders CompanyGoogle Scholar
Auffray, J-C., Debat, V., and Alibert, P. (1999). Shape asymmetry and developmental stability. In On Growth and Form: Spatio-Temporal Pattern Formation in Biology, ed. Chaplain, M. A. J., Singh, G. D., and McLachlan, J. C.. Chichester: John Wiley & Sons Ltd. pp. 309–324Google Scholar
Bailey, S. E. (2004). A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins. Journal of Human Evolution, 47, 183–98CrossRefGoogle ScholarPubMed
Bailit, H. L., Workman, P. L., Niswander, J. D., and MacLean, C. J. (1970). Dental asymmetry as an indicator of genetic and environmental conditions in human populations. Human Biology, 42, 626–38Google ScholarPubMed
Bedrick, E. J., Lapidus, J., and Powell, J. F. (2000). Estimating the Mahalanobis distance from mixed continuous and discrete data. Biometrics, 56, 394–401CrossRefGoogle ScholarPubMed
Bhaskar, S. N. (1980). Orban's Oral Histology and Embryology, 9th edn. St Louis: CV Mosby CompanyGoogle Scholar
Biggerstaff, R. H. (1969a). The basal area of posterior tooth crown components: the assessment of within tooth variations of premolars and molars. American Journal of Physical Anthropology, 31, 163–70CrossRefGoogle Scholar
Biggerstaff, R. H. (1969b). Electronic methods for the analysis of the human post-canine dentition. American Journal of Physical Anthropology, 31, 235–42CrossRefGoogle Scholar
Biggerstaff, R. H. (1975). Cusp size, sexual dimorphism, and heritability of cusp size in twins. American Journal of Physical Anthropology, 42, 127–40CrossRefGoogle ScholarPubMed
Bishara, S. E., Vonwald, L., and Jakobsen, J. R. (1999). Changes in root length from early to mid-adulthood: resorption or apposition? American Journal of Orthodontics and Dentofacial Orthopedics, 115, 563–8CrossRefGoogle ScholarPubMed
Black, G. V. (1897). Descriptive Anatomy of the Human Teeth. Philadelphia: S. S. White Dental Manufacturing CompanyGoogle Scholar
Blackith, R. E. and Reyment, R. A. (1971). Multivariate Morphometrics. New York: Academic PressGoogle Scholar
Bland, J. M. and Altman, D. G. (1986). Statistical methods for assessing the difference between two methods of measurement. Lancet, 1, 307–10CrossRefGoogle Scholar
Bland, J. M. and Altman, D. G. (1996a). Statistical notes: measurement error and correlation coefficients. British Medical Journal, 313, 41–2CrossRefGoogle Scholar
Bland, J. M. and Altman, D. G. (1996b). Statistical notes: measurement error proportional to the mean. British Medical Journal, 313, 106CrossRefGoogle Scholar
Bland, J. M. and Altman, D. G. (1996c). Statistical notes: measurement error. British Medical Journal, 313, 744CrossRefGoogle Scholar
Bland, J. M. and Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8, 135–60CrossRefGoogle ScholarPubMed
Bronowski, J. and Long, W. M. (1951). Statistical methods in anthropology. Nature, 168, 794CrossRefGoogle ScholarPubMed
Bronowski, J. and Long, W. M. (1952). Statistics of discrimination in anthropology. American Journal of Physical Anthropology, 10, 385–94CrossRefGoogle ScholarPubMed
Bronowski, J. and Long, W. M. (1953). The Australopithecine milk canines. Nature, 172, 251CrossRefGoogle ScholarPubMed
Brook, A. H., Underhill, C., Foo, L. K., and Hector, M. (2006). Approximal attrition and permanent tooth crown size in a Romano-British population. Dental Anthropology, 19, 23–8Google Scholar
Brothwell, D. R., editor. (1963). Dental Anthropology. New York: OxfordGoogle Scholar
Brown, T. and Townsend, G. C. (1979). Sex determination by single and multiple tooth measurements. Occasional Papers in Human Biology, 1, 1–16Google Scholar
Butler, P. M. (1939). Studies of the mammalian dentition: differentiation of the post-canine dentition. Proceedings of the Zoological Society of London, 109, 1–36Google Scholar
Campbell, N. A. (1980). Robust procedures in multivariate analysis. Applied Statistics, 29, 231–7CrossRefGoogle Scholar
Campbell, N. A. (1984). Some aspects of allocation and discrimination. In Multivariate Statistical Methods in Physical Anthropology: A Review of Recent Advances and Current Developments, ed. Van, G. N. Vark and Howells, W. W.. Boston: D. Reidel Publishing Company, pp. 177–92CrossRefGoogle Scholar
Campbell, T. D. (1925). Dentition and Palate of the Australian Aboriginal. Adelaide: Hassell PressGoogle Scholar
Conneally, P. M., Merritt, A. D., Quinn, B. E., and Potter, R. H. (1968). Semi-automatic digital printing caliper for tooth measurement. Journal of Dental Research, 47, 51CrossRefGoogle Scholar
Constandse-Westermann, T. S. (1972). Coefficients of Biological Distance. The Netherlands: Oosterhout N. BGoogle Scholar
Cooley, W. W., and Lohnes, P. R. (1971). Multivariate data analysis. New York: John Wiley & Sons, IncGoogle Scholar
Corruccini, R. S. (1978). Crown component variation in hominoid upper first premolars. Archives of Oral Biology, 23, 491–4CrossRefGoogle ScholarPubMed
Corruccini, R. S. (1979). Molar cusp-size variability in relation to odontogenesis in hominoid primates. Archives of Oral Biology, 24, 633–4CrossRefGoogle ScholarPubMed
Corruccini, R. S. (1983). Principal components for allometric analysis. American Journal of Physical Anthropology, 60, 451–3CrossRefGoogle ScholarPubMed
Croxton, F. E. and Cowden, D. J. (1939). Applied General Statistics. New York: Prentice-Hall, IncCrossRefGoogle Scholar
Dahlberg, A. A. (1945). The changing dentition of man. Journal of the American Dental Association, 32, 676–90CrossRefGoogle Scholar
Dahlberg, G. (1940). Statistical Methods for Medical and Biological Students. London: George Allen & Unwin, LtdGoogle Scholar
Davis, G. R. and Wong, F. S. (1996). X-ray microtomography of bones and teeth. Physiological Measurement, 17, 121–46CrossRefGoogle ScholarPubMed
Demirjian, A., Goldstein, H., and Tanner, J. M. (1973). A new system of dental age assessment. Human Biology, 45, 211–27Google ScholarPubMed
Demirjian, A. and Goldstein, H. (1976). New systems for dental maturity based on seven and four teeth. Annals of Human Biology, 3, 411–21CrossRefGoogle ScholarPubMed
Terra, M. (1905). Beitrage zu einer Odontographie den Menschenrassen. Berlin: Berlinishche VerlagsanstaltGoogle Scholar
De, Vito C. and Saunders, S. R. (1990). A discriminant function analysis of deciduous teeth to determine sex. Journal of Forensics, 35, 845–58Google Scholar
Diamanti, J. and Townsend, G. C. (2003). New standards for permanent tooth emergence in Australian children. Australian Dental Journal, 48, 39–42CrossRefGoogle ScholarPubMed
Dinh, D. P. and Harris, E. F. (2005). A study of cusp base areas in the maxillary permanent molars of American Whites. Dental Anthropology, 18, 22–9Google Scholar
Ditch, L. E. and Rose, J. C. (1972). A multivariate dental sexing technique. American Journal of Physical Anthropology, 37, 61–4CrossRefGoogle ScholarPubMed
Edgar, H. J. (2005). Prediction of race using characteristics of dental morphology. Journal of Forensic Science, 50, 269–73CrossRefGoogle ScholarPubMed
Falconer, D. S. (1967). The inheritance of liability to diseases with variable age of onset, with particular reference to diabetes mellitus. Annals of Human Genetics, 31, 1–20CrossRefGoogle ScholarPubMed
Fisher, R. A. (1954). Statistics for Research Workers, 12th edn. Edinburgh: Oliver and BoydGoogle Scholar
Galton, F. (1883). Inquiries into Human Faculty and its Development. London: MacmillanCrossRefGoogle Scholar
Garn, S. M., Helmrich, R. H., and Lewis, A. B. (1967a). Transducer caliper with readout capability for odontometry. Journal of Dental Research, 46, 306CrossRefGoogle Scholar
Garn, S. M., Lewis, A. B., Swindler, D. R., and Kerewsky, R. S. (1967b). Genetic control of sexual dimorphism in tooth size. Journal of Dental Research, 46, 963–72CrossRefGoogle Scholar
Goose, D. H. (1963). Dental measurement: an assessment of its value in anthropological studies. In: Dental Anthropology, ed. Brothwell, D. R.. New York: Pergamon Press, pp. 125–48Google Scholar
Gorsuch, R. (1983). Factor Analysis, 2nd edn. Hillsdale: Lawrence Erlbaum PublishersGoogle Scholar
Greene, D. L. (1984). Fluctuating dental asymmetry and measurement error. American Journal of Physical Anthropology, 65, 283–9CrossRefGoogle ScholarPubMed
Gregory, W. K. and Hellman, M. (1926). The dentition of Dryopithecus and the origin of man. Anthropological Papers of the Museum of Natural History, 28, 1–122
Greulich, W. W. and Pyle, S. I. (1959). Radiographic Atlas of Skeletal Development of the Hand and Wrist, 2nd edn. Stanford: Stanford University PressGoogle Scholar
Grewal, M. S. (1962). The rate of genetic divergence in the C57BL strain of mice. Genetical Research, 3, 226–37CrossRefGoogle Scholar
Grüneberg, H. (1952). Genetical studies on the skeleton of the mouse. IV. Quasi-continuous variations. Journal of Genetics, 51, 95–114CrossRefGoogle Scholar
Gustafson, G. (1950). Age determination on teeth. Journal of the American Dental Association, 41, 45–54CrossRefGoogle Scholar
Gustafson, G. (1966). Forensic Odontology. New York: American Elsevier Publishing Company.Google Scholar
Haavikko, K. (1970). The formation and the alveolar and clinical eruption of the permanent teeth: an orthopantomographic study. Suomen Hammaslaakariseuran Toimituksia, 66, 103–70Google Scholar
Hanihara, T. and Ishida, H. (2005). Metric dental variation of major human populations. American Journal of Physical Anthropology, 128, 287–98CrossRefGoogle ScholarPubMed
Harman, H. H. (1976). Modern Factor Analysis, 3rd edn. Chicago: University of Chicago PressGoogle Scholar
Harris, E. F. (2003). Where's the variance? Variance components in tooth sizes of the permanent dentition. Dental Anthropology, 16, 84–94Google Scholar
Harris, E. F. and Bailit, H. L. (1980). The metaconule: a morphologic and familial analysis of a molar cusp in humans. American Journal of Physical Anthropology, 53, 349–58CrossRefGoogle ScholarPubMed
Harris, E. F. and Bailit, H. L. (1987). Odontometric comparisons among Solomon Islanders and other Oceanic peoples. In The Solomon Islands Project: A Long Term Study of Health, Human Biology and Culture Change, ed. Friedlaender, J. S.. Oxford: Oxford University Press, pp. 215–64Google Scholar
Harris, E. F. and Bailit, H. L. (1988). A principal components analysis of human odontometrics. American Journal of Physical Anthropology, 75, 87–99CrossRefGoogle ScholarPubMed
Harris, E. F. and Burris, B. G. (2003). Contemporary permanent tooth dimensions, with comparisons to G. V. Black's data. Journal of the Tennessee Dental Association, 83, 25–9Google Scholar
Harris, E. F. and Dinh, D. P. (2006). Intercusp relationships of the maxillary permanent first and second molars in American Whites. American Journal of Physical Anthropology, in pressCrossRefGoogle ScholarPubMed
Harris, E. F. and McKee, J. H. (1990). Tooth mineralization standards for blacks and whites from the middle southern United States. Journal of Forensic Science, 35, 859–72CrossRefGoogle ScholarPubMed
Harris, E. F. and Sjøvold, T. (2004). Calculation of Smith's Mean Measure of Divergence for intergroup comparisons using nonmetric data. Dental Anthropology, 17, 83–93Google Scholar
Harris, E. F. and Smith, R. J. (1982). Occlusion and arch size in families: a principal components analysis. Angle Orthodontist, 52, 135–43Google ScholarPubMed
Hartman, S. E. (1989). Stereophotogrammetric analysis of occlusal morphology of extant hominoid molars: phenetics and function. American Journal of Physical Anthropology, 80, 145–66CrossRefGoogle ScholarPubMed
Hayes, R. L. and Mantel, N. (1958). Procedures for computing the mean age of eruption of human teeth. Journal of Dental Research, 37, 938–47CrossRefGoogle ScholarPubMed
Heidmann, J. (1986). Comparison of different methods for estimating human tooth-eruption time on one set of Danish national data. Archives of Oral Biology, 31, 815–17CrossRefGoogle ScholarPubMed
Henderson, A. M. (1975). Dental Field Theory: An Application to Primate Dental Evolution. Ph. D. dissertation, University of Colorado, Boulder
Henderson, A. M. and Greene, D. L. (1975). Dental field theory: an application to primate evolution. Journal of Dental Research, 54, 344–50Google ScholarPubMed
Hillson, S., FitzGerald, C., and Flinn, H. (2005). Alternative dental measurements: proposals and relationships with other measurements. American Journal of Physical Anthropology, 126, 413–26CrossRefGoogle ScholarPubMed
Hlusko, L. J., Maas, M. L., and Mahaney, M. C. (2004). Statistical genetics of molar cusp patterning in pedigreed baboons: implications for primate dental development and evolution. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution, 302, 268–83CrossRefGoogle ScholarPubMed
Holman, D. J. and Jones, R. E. (1998). Longitudinal analysis of deciduous tooth emergence: II. Parametric survival analysis in Bangladeshi, Guatemalan, Japanese, and Javanese children. American Journal of Physical Anthropology, 105, 209–303.0.CO;2-P>CrossRefGoogle ScholarPubMed
Holman, D. J. and Jones, R. E. (2003). Longitudinal analysis of deciduous tooth emergence: III. Sexual dimorphism in Bangladeshi, Guatemalan, Japanese, and Javanese children. American Journal of Physical Anthropology, 122, 269–78CrossRefGoogle ScholarPubMed
Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports Medicine, 30, 1–15CrossRefGoogle Scholar
Hosmer, D. W. and Lemeshow, S. (2000). Applied Logistic Regression, 2nd edn. Hoboken: John Wiley & Sons, IncCrossRefGoogle Scholar
Hrdlicka, A. (1920). Shovel-shaped teeth. American Journal of Physical Anthropology, 3, 429–65CrossRefGoogle Scholar
Jaswal, S. (1983). Age and sequence of permanent-tooth emergence among Khasis. American Journal of Physical Anthropology, 62, 177–86CrossRefGoogle ScholarPubMed
Jernvall, J. and Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92, 19–29CrossRefGoogle ScholarPubMed
Johanson, G. (1971). Age determination from human teeth. Odontologisk Revy, 22 (suppl 22), 1–126Google Scholar
Kanazawa, E., Sekikawa, M., Kamiakito, Y., and Ozaki, T. (1989). Metrical study on teeth and mandible in Macaca fuscata fuscata. 2. Principal component analysis. Nichidai Koko Kagaku 15, 138–44 [in Japanese]Google ScholarPubMed
Kanazawa, E., Sekikawa, M., and Ozaki, T. (1983). Three-dimensional measurements of the occlusal surface of upper first molars in a modern Japanese population. Acta Anatomica (Basel), 116, 90–96CrossRefGoogle Scholar
Kelley, J. (1995a). Sexual dimorphism in canine shape among extant great apes. American Journal of Physical Anthropology, 96, 365–89CrossRefGoogle Scholar
Kelley, J. (1995b). Sex determination in Miocene catarrhine primates. American Journal of Physical Anthropology, 96, 391–417CrossRefGoogle Scholar
Kelloway, E. K. (1998). Using LISREL for Structural Equation Modeling: A Researcher's Guide. London: SAGE PublicationsGoogle Scholar
Kettunen, P. and Thesleff, I. (1998). Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Developmental Dynanmics, 211, 256–683.0.CO;2-G>CrossRefGoogle ScholarPubMed
Kieser, J. A. and Groeneveld, H. T. (1989). Allocation and discrimination based on human odontometric data. American Journal of Physical Anthropology, 79, 331–8CrossRefGoogle ScholarPubMed
Kieser, J. A. and Groeneveld, H. T. (1991). The reliability of human odontometric data. Journal of the Dental Association of South Africa, 46, 267–70Google ScholarPubMed
Kieser, J. A., Groeneveld, H. T., McKee, J., and Cameron, N. (1990). Measurement error in human dental mensuration. Annals of Human Biology, 17, 523–8CrossRefGoogle ScholarPubMed
Kieser, J. A., Groeneveld, H. T., and Preston, C. B. (1986). Fluctuating dental asymmetry as a measure of odontogenic canalization in man. American Journal of Physical Anthropology, 71, 437–44CrossRefGoogle ScholarPubMed
Klecka, W. R. (1980). Discriminant Analysis. Beverly Hills: SageCrossRefGoogle Scholar
Knapp, T. R. (1992). Technical error of measurement: a methodological critique. American Journal of Physical Anthropology, 87, 235–6CrossRefGoogle Scholar
Kondo, S., and Townsend, G. C. (2006). Associations between Carabelli trait and cusp areas in human permanent maxillary first molars. American Journal of Physical Anthropology, 129, 196–203CrossRefGoogle ScholarPubMed
Konigsberg, L. and Holman, D. (1999). Estimation of age at death from dental emergence and implications for studies of prehistoric somatic growth. In Human Growth in the Past: Studies from Bones and Teeth, ed. Hoppa, R. D. and FitzGerald, C. M.. Cambridge: Cambridge University Press, pp. 264–89Google Scholar
Lasker, G. W. and Lee, M. M. C. (1957). Racial traits in the human dentition. Journal of Forensic Science, 2, 401–19Google Scholar
Leamy, L. J., Workman, M. S., Routman, E. J., and Cheverud, J. M. (2005). An epistatic genetic basis for fluctuating asymmetry of tooth size and shape in mice. Heredity, 94, 316–25CrossRefGoogle ScholarPubMed
Lease, L. R. and Sciulli, P. W. (2005). Brief communication: discrimination between European-American and African-American children based on deciduous dental metrics and morphology. American Journal of Physical Anthropology, 126, 56–60CrossRefGoogle ScholarPubMed
Leroy, R., Bogaerts, K., Lesaffre, E., and Declerck, D. (2003). The emergence of permanent teeth in Flemish children. Community Dentistry and Oral Epidemiology, 31, 30–9CrossRefGoogle ScholarPubMed
Lestrel, P. E. (2000). Morphometrics for the Life Sciences. New Jersey: World ScientificCrossRefGoogle Scholar
Lewontin, R. C. (1972). The apportionment of human diversity. In Evolutionary Biology, Vol. 6, ed. Dobzhansky, T., Hecht, T., and Steere, W. C., pp. 381–398Google Scholar
Liversidge, H. M. (2003). Variation in modern human dental development. In Patterns of Growth and Development in the Genus Homo, ed. Thompson, J. L., Krovitz, G. E., and Nelson, A. J.. Cambridge: Cambridge University Press, pp. 73–113CrossRefGoogle Scholar
Liversidge, H. M., Dean, M. C., and Molleson, T. I. (1993). Increasing human tooth length between birth and 5.4 years. American Journal of Physical Anthropology, 90, 307–13CrossRefGoogle ScholarPubMed
Liversidge, H. M. and Molleson, T. I. (1999a). Deciduous tooth size and morphogenetic fields in children from Christ Church, Spitalfields. Archives of Oral Biology, 44, 7–13CrossRefGoogle Scholar
Liversidge, H. M., and Molleson, T. I. (1999b). Developing permanent tooth length as an estimate of age. Journal of Forensic Science, 44, 917–920CrossRefGoogle Scholar
Lombardi, A. V. (1975). A factor analysis of morphogenetic fields in the human dentition. American Journal of Physical Anthropology, 42, 99–104CrossRefGoogle ScholarPubMed
Lucy, D. and Pollard, A. M. (1995). Further comments on the estimation of error associated with the Gustafson dental age estimation method. Journal of Forensic Science, 40, 222–7
Lucy, D., Aykroyd, R. G., Pollard, A. M., and Solheim, T. (1996). A Bayesian approach to adult human age estimation from dental observations by Johanson's age changes. Journal of Forensic Science, 41, 189–94CrossRefGoogle ScholarPubMed
Lund, H. and Mornstad, H. (1999). Gender determination by odontometrics in a Swedish population. Journal of Forensic Odontostomatology, 17, 30–4Google Scholar
Macho, G. A. and Moggi-Cecchi, J. (1992). Reduction of maxillary molars in Homo sapiens sapiens: a different perspective. American Journal of Physical Anthropology, 87, 151–60CrossRefGoogle ScholarPubMed
Magnusson, T. E. (1982). Emergence of primary teeth and onset of dental stages in Icelandic children. Community Dentistry and Oral Epidemiology, 10, 91–7CrossRefGoogle ScholarPubMed
Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceeding of the National Institute of Science in India, 2, 49–55Google Scholar
Maples, W. R. (1978). An improved technique using dental histology for estimation of adult age. Journal of Forensic Science, 23, 764–70
Maples, W. R. and Rice, P. M. (1979). Some difficulties in the Gustafson dental age estimations. Journal of Forensic Science, 24, 168–72
Martin, R. (1928). Lehrbuch der Anthropologie in Systematischer Darstellung. 3 Vols. Jena: Gustav FischerGoogle Scholar
Mayhall, J. T. and Kageyama, I. (1997). A new, three-dimensional method for determining tooth wear. American Journal of Physical Anthropology, 103, 463–93.0.CO;2-O>CrossRefGoogle ScholarPubMed
Mayhall, J. T. and Kanazawa, E. (1989). Three-dimensional analysis of the maxillary first molar crowns of Canadian Inuit. American Journal of Physical Anthropology, 78, 73–8CrossRefGoogle ScholarPubMed
Merwin, D. R. and Harris, E. F. (1998). Sibling similarities in the tempo of human tooth mineralization. Archives of Oral Biology, 43, 205–10CrossRefGoogle ScholarPubMed
Molnar, S., McKee, J. K., and Molnar, I. (1983). Measurements of tooth wear among Australian aborigines: I. Serial loss of the enamel crown. American Journal of Physical Anthropology, 61, 51–65CrossRefGoogle ScholarPubMed
Moorrees, C. F. A. (1957). The Aleut Dentition: A Correlative Study of Dental Characteristics in an Eskimoid People. Cambridge: Harvard University PressCrossRefGoogle Scholar
Moorrees, C. F. A. and Chadha, J. M. (1962). Crown diameters of corresponding tooth groups in the deciduous and permanent dentition. Journal of Dental Research, 41, 466–70CrossRefGoogle Scholar
Moorrees, C. F. A., Fanning, E. A., and Hunt, E. E. Jr. (1963). Age variation of formation stages for ten permanent teeth. Journal of Dental Research, 42, 1490–502CrossRefGoogle ScholarPubMed
Moorrees, C. F. A. and Kent, R. L. Jr. (1981). Interrelations in the timing of root formation and tooth emergence. Proceedings of the Finnish Dental Society, 77, 113–17Google ScholarPubMed
Moorrees, C. F. A. and Reed, R. B. (1964). Correlations among crown diameters of human teeth. Archives of Oral Biology, 9, 685–97CrossRefGoogle ScholarPubMed
Moss, M. L. and Chase, P. S. (1966). Morphology of Liberian Negro deciduous teeth. I. Odontometry. American Journal of Physical Anthropology, 24, 215–29CrossRefGoogle ScholarPubMed
Murphy, T. (1959a). The changing pattern of dentine exposure in human tooth attrition. American Journal of Physical Anthropology, 17, 167–78CrossRefGoogle Scholar
Murphy, T. (1959b). Gradients of dentine exposure in human molar tooth attrition. American Journal of Physical Anthropology, 17, 179–86CrossRefGoogle Scholar
Nakajima, A., Sameshima, G. T., Arai, Y., Homme, Y., Shimizu, N., and Dougherty, H. Sr. (2005). Two- and three-dimensional orthodontic imaging using limited cone beam-computed tomography. Angle Orthodontist, 75, 895–903Google ScholarPubMed
Neale, M. C. and Cardon, L. R. (1992). Methodology for Genetic Studies of Twins and Families. Dordrecht: Kluwer Academic PublishersCrossRefGoogle Scholar
Ono, H. (1960). Mesiodistal diameters of primary and permanent teeth and their correlation in the arch. Kokubyo Gakkai Zasshi, 27, 221–34Google Scholar
Rourke, O' D. H. and Crawford, M. H. (1980). Odontometric differentiation of transplanted Mexican Indian populations: Cuanalan and Saltillo. American Journal of Physical Anthropology, 52, 421–34CrossRefGoogle Scholar
Owsley, D. W. and Webb, R. S. (1983). Misclassification probability of dental discrimination functions for sex determination. Journal of Forensic Science, 28, 181–5CrossRefGoogle ScholarPubMed
Palmer, A. R. (1994). Fluctuating asymmetry analyses: a primer. In: Developmental Instability: Its Origins and Evolutionary Implications, ed. Markow, T. A.. Dordrecht: Kluwer Academic Publishers, pp. 335–64CrossRefGoogle Scholar
Palmer, A. R. and Strobeck, C. (2003). Fluctuating asymmetry analyses revisited. In Developmental Instability: Causes and Consequences, ed. Polak, M.. Oxford: Oxford University Press, pp. 279–319Google Scholar
Pearl, R. (1940). Introduction to Medical Biometry and Statistics, 3rd edn. Philadelphia: W. B. Saunders CompanyGoogle Scholar
Pearson, K. (1926). On the coefficient of racial likeness. Biometrika 18(1), 105–17CrossRefGoogle Scholar
Pearson, K. (1928). Note on the standardization of method of using the coefficient of racial likeness. Biometrika, 20, 376–9CrossRefGoogle Scholar
Pelsmaekers, B., Loos, R., Carels, C., Derom, C., and Vlietinck, R. (1997). The genetic contribution to dental maturation. Journal of Dental Research, 76, 1337–40CrossRefGoogle ScholarPubMed
Penrose, L. S. (1953–1954). Distance, size and shape. Annals of Eugenics, 19, 337–43Google Scholar
Peterson, K. E. and Chen, L. C. (1990). Defining undernutrition for public health purposes in the United States. Journal of Nutrition, 120, 933–42CrossRefGoogle ScholarPubMed
Plikus, M. V., Zeichner-David, M., Mayer, J. A.et al. (2005). Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evolutionary Development, 7, 440–57CrossRefGoogle ScholarPubMed
Polak, M. (2003). Developmental Instability: Causes and Consequences. Oxford: Oxford University PressGoogle Scholar
Potter, R. H. and Nance, W. E. (1976). A twin study of dental dimension. I. Discordance, asymmetry and mirror imagery. American Journal of Physical Anthropology, 44, 391–6CrossRefGoogle ScholarPubMed
Potter, R. H., Yu, P-L., Dahlberg, A. A., Merritt, A. D., and Conneally, P. M. (1968). Genetic structure of tooth size factors in size factors in Pima Indian families. American Journal of Human Genetics, 20, 89–100Google Scholar
Potter, R. H., Yu, P-L., Nance, W. E., and Davis, W. B. (1976). A twin study of dental dimension. II. independent genetic determinants. American Journal of Physical Anthropology, 44, 397–412CrossRefGoogle ScholarPubMed
Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9, 705–24CrossRefGoogle Scholar
Prossinger, H. (1998). The reconstruction of missing tooth dimensions as a prerequisite for sex determination. In Dental Anthropology: Fundamentals, Limits, and Prospects, ed. Alt, K. W., Rösing, F. W., and Teschler-Nicola, M.. Vienna: Springer, pp. 501–518CrossRefGoogle Scholar
Psoter, W. J., Morse, D. E., Pendrys, D. G., Zhang, H., and Mayne, S. T. (2003). Median ages of eruption of the primary teeth in white and Hispanic children from Arizona. Pediatric Dentistry, 25, 257–61Google ScholarPubMed
Rehg, J. A. and Leigh, S. R. (1999). Estimating sexual dimorphism and size differences in the fossil record: a test of methods. American Journal of Physical Anthropology, 110, 95–1043.0.CO;2-J>CrossRefGoogle Scholar
Relethford, J. H. (1991). Genetic drift and anthropometric variation in Ireland. Human Biology, 63, 155–65Google ScholarPubMed
Relethford, J. H. (1994). Craniometric variation among modern human populations. American Journal of Physical Anthropology, 95, 53–62CrossRefGoogle ScholarPubMed
Relethford, J. H. (2002). Apportionment of global human genetic diversity based on craniometrics and skin color. American Journal of Physical Anthropology, 118, 393–8CrossRefGoogle ScholarPubMed
Relethford, J. H. and Blangero, J. (1990). Detection of differential gene flow from patterns of quantitative variation. Human Biology, 62, 5–25Google ScholarPubMed
Reyment, R. A. (1991). Multidimensional Paleobiology. Oxford: Pergamon PressGoogle Scholar
Richards, L. C. and Brown, T. (1981). Dental attrition and degenerative arthritis of the temporomandibular joint. Archaeologica Oceania, 16, 94–8CrossRefGoogle Scholar
Rösing, F. W. and Kvaal, S. I. (1998). Dental age in adults – a review of estimation methods. In Dental Anthropology: Fundamentals, Limits, and Prospects, ed. Alt, K. W., Rösing, F. W., and Teschler-Nicola, M.. Wien: Springer, pp. 443–68CrossRefGoogle Scholar
Sciulli, P. W., Williams, J. A., and Gugelchuk, G. M. (1977). Canine size: an aid in sexing prehistoric Amerindians. Journal of Dental Research, 56, 1424CrossRefGoogle ScholarPubMed
Scott, G. R. (1977). Classification, sex dimorphism, association, and population variation of the canine distal accessory ridge. Human Biology, 49, 453–69Google ScholarPubMed
Scott, G. R. (1980). Population variation of Carabelli's trait. Human Biology, 52, 63–78Google ScholarPubMed
Selmer-Olson, R. (1949). An Odontometrical Study of the Norwegian Lapps. Oslo: I Kommisjon hos Jacob DybwadGoogle Scholar
Shaw, J. C. M. (1931). The Teeth, the Bony Palate and the Mandible in Bantu Races of South Africa. London: John Bales, Sons and Danielsson, LtdGoogle Scholar
Sherfudhin, H., Abdullah, M. A., and Khan, N. (1996). A cross-sectional study of canine dimorphism in establishing sex identity: comparison of two statistical methods. Journal of Oral Rehabilitation, 23, 627–31CrossRefGoogle ScholarPubMed
Shimizu, T., Oikawa, H., Han, J., Kurose, E., and Maeda, T. (2004). Genetic analysis of crown size in the first molars using SMXA recombinant inbred mouse strains. Journal of Dental Research, 83, 45–9CrossRefGoogle ScholarPubMed
Sjøvold, T. (1973). The occurrence of minor non-metrical variants in the skeleton and their quantitative treatment for population comparisons. Homo, 24, 204–33Google Scholar
Sjøvold, T. (1977). Non-metrical divergence between skeletal populations. Ossa, 4, suppl. 1Google Scholar
Slice, D. E.. (2005). Modern Morphometrics in Physical Anthropology. New York: Kluwer AcademicsCrossRefGoogle Scholar
Smith, B. H. (1984). Patterns of molar wear in hunger-gatherers and agriculturalists. American Journal of Physical Anthropology, 63, 39–56CrossRefGoogle ScholarPubMed
Smith, B. H. (1991). Standards of human tooth formation and dental age assessment. In Advances in Dental Anthropology, ed. Kelley, M. A. and Larsen, C. S.. New York: Wiley-Liss, pp. 143–168Google Scholar
Smith, B. H., Garn, S. M., and Cole, P. E. (1982). Problems of sampling and inference in the study of fluctuating dental asymmetry. American Journal of Physical Anthropology, 58, 281–9CrossRefGoogle Scholar
Smith, C. A. B. (1972). Coefficients of biological distance. Annals of Human Genetics, 36, 241–45Google Scholar
Sneath, P. H. A. and Sokal, R. R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman and CompanyGoogle Scholar
Snedecor, G. W. (1948). Statistical Methods, 4th edn. Ames, Iowa: Collegiate PressGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1995). Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn. San Francisco: W.H. Freeman and CompanyGoogle Scholar
Sokal, R. R. and Sneath, P. H. A. (1963). Principles of Numerical Taxonomy. San Francisco: W. H. Freeman and CompanyGoogle Scholar
Steel, R. G. D. and Torrie, J. H. (1960). Principles and Procedures of Statistics, with Special Reference to the Biological Sciences. New York: McGraw-Hill Book Company, IncGoogle Scholar
Suwa, G., Wood, B. A., and White, T. D. (1995). Further analysis of mandibular molar crown and cusp areas in Pliocene and early Pleistocene hominids. American Journal of Physical Anthropology, 93, 407–26CrossRefGoogle Scholar
Swindler, D. R. (1976). Dentition of Living Primates. New York: Academic PressGoogle Scholar
Swindler, D. R. (2002). Primate Dentition: An Introduction to the Teeth of Non-Human Primates. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Tabachnick, B. G. and Fidell, L. S. (2001). Using Multivariate Statistics. Boston: Allyn and BaconGoogle Scholar
Tanner, J. M., Whitehouse, R. H., Marshall, W. A., Healy, M. J. R., and Goldstein, H. (1975). Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 Method). London: Academic PressGoogle Scholar
Tanner, J. M. (1976). Growth as a monitor of nutritional status. Proceedings of the Nutritional Society, 35, 315–22CrossRefGoogle ScholarPubMed
Teschler-Nicola, M. and Prossinger, H. (1998). Sex determination using tooth dimensions. In Dental Anthropology: Fundamentals, Limits, and Prospects, ed. Alt, K. W., Rösing, F. W., and Teschler-Nicola, M.. Vienna: Springer, pp. 479–500CrossRefGoogle Scholar
Townsend, G. C. (1976). Tooth Size Variability in Australian Aboriginals: A Descriptive and Genetic Study. Ph. D. dissertation, University of Adelaide, South Australia
Townsend, G. C. and Brown, T. (1979). Family studies of tooth size factors in the permanent dentition. American Journal of Physical Anthropology, 50, 183–90CrossRefGoogle ScholarPubMed
Townsend, G. C. and Brown, T. (1981). Morphogenetic fields within the dentition. Australian Orthodontics Journal, 7, 3–12Google ScholarPubMed
Townsend, G. C., Richards, L., and Hughes, T. (2003). Molar intercuspal dimensions: genetic input to phenotypic variation. Journal of Dental Research, 82, 350–5CrossRefGoogle ScholarPubMed
Townsend, G. C., Yamada, H., and Smith, P. (1990). Expression of the entoconulid (sixth cusp) on mandibular molar teeth of an Australian aboriginal population. American Journal of Physical Anthropology, 82, 267–74CrossRefGoogle ScholarPubMed
Tukey, J. W. (1977). Exploratory Data Analysis. Reading, Mass: Addision-WesleyGoogle Scholar
Turner, C. G. II, Nichol, C. R., and Scott, G. R. (1991). Scoring procedures for key morphological traits of the permanent dentition: the Arizona State University dental anthropology system. In Advances in Dental Anthropology, ed. Kelley, M. A. and Larsen, C. S.. New York: Wiley-Liss, pp. 13–31Google Scholar
Utermohle, C. J. and Zegura, S. L. (1982). Intra- and interobserver error in craniometry: a cautionary tale. American Journal of Physical Anthropology, 57, 303–10CrossRefGoogle ScholarPubMed
Utermohle, C. J., Zegura, S. L., and Heathcote, G. M. (1983). Multiple observers, humidity, and choice of precision statistics: factors influencing craniometric data quality. American Journal of Physical Anthropology, 61, 85–95CrossRefGoogle ScholarPubMed
Van, Dongen S., Molenberghs, G., and Matthysen, E. (1999). The statistical analysis of fluctuating asymmetry: REML estimation of a mixed regression model. Journal of Evolutionary Biology, 12, 94–102Google Scholar
Van, Valen L. (1962). A study of fluctuating asymmetry. Evolution, 16, 125–42Google Scholar
Washburn, S. L. (1951). The New Physical Anthropology. Transactions of the New York Academy of Science, 13, 298–304CrossRefGoogle ScholarPubMed
Weiss, K. M. (1990). Duplication with variation: metameric logic in evolution from genes to morphology. Yearbook of Physical Anthropology, 33, 1–24CrossRefGoogle Scholar
Wilder, H. H. (1920). A Laboratory Manual of Anthropometry. Philadelphia: P. Blakiston's Son and CompanyCrossRefGoogle Scholar
Winer, B. J., Brown, D. R., and Michels, K. M. (1991). Statistical Principles in Experimental Design, 3rd edn. New York: McGraw-Hill Book CompanyGoogle Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W. (2004). Tooth cementum annulation for age estimation: results from a large known-age validation study. American Journal of Physical Anthropology, 123, 119–29CrossRefGoogle ScholarPubMed
Woods, M. A., Robinson, Q. C., and Harris, E. F. (1990). Age-progressive changes in pulp widths and root lengths during adulthood: a study of American Blacks and Whites. Gerodontology, 9, 41–50CrossRefGoogle ScholarPubMed
Workman, M. S., Leamy, L. J., Routman, E. J., and Cheverud, J. M. (2002). Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics, 160, 1573–86Google ScholarPubMed
Yule, G. U. and Kendall, M. G. (1950). An Introduction to the Theory of Statistics, 14th edn. New York: HafnerGoogle Scholar
Zar, J. H. (1999). Biostatistical Analysis, 4th edn. Upper Saddle River, NJ: Prentice HallGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×