Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T05:10:10.218Z Has data issue: false hasContentIssue false

12 - The Magellanic moorland

Published online by Cambridge University Press:  10 August 2009

M. T. K. Arroyo
Affiliation:
Universidad de Chile
P. Pliscoff
Affiliation:
Universidad de Chile
M. Mihoc
Affiliation:
Universidad de Concepción
M. Arroyo-Kalin
Affiliation:
University of Cambridge
Lauchlan H. Fraser
Affiliation:
University of Akron, Ohio
Paul A. Keddy
Affiliation:
Southeastern Louisiana University
Get access

Summary

Introduction

Globally, wetlands cover an estimated 7 to 8 million km2 (Mitsch et al. 1994). These azonal ecosystems are widely and disjunctively spread throughout all major biomes of the Earth, following no evident pattern. Under the guise of wetlands fall a wide variety of ecosystems, ranging from open water bodies to peatlands. A comprehensive global strategy for the conservation of wetlands, thus requires recognition of the huge diversity of wetlands, and intimate knowledge of local environmental conditions and the biota of each wetland area and surrounding vegetation types. Because major wetland areas occur at many latitudes and are embedded in many different terrestrial ecosystems, it stands to reason that the sum total of wetland biodiversity could turn out to be quite high on a global scale in comparison with land area occupied by wetlands.

The southwestern border of southern South America is characterized by cool and windy summers, with recorded annual average precipitation reaching as high as 7 m on one offshore island. This area (and others further to the north) was heavily glaciated in the Pleistocene, and today consists of a highly dissected, rugged landscape interrupted by two major icefields (Southern Patagonian and North Patagonian) and numerous fjords. Corresponding closely in its distribution to this heavily glaciated land area is found a major area of cool temperate wetlands (Fig. 12.1).

Type
Chapter
Information
The World's Largest Wetlands
Ecology and Conservation
, pp. 424 - 445
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apps, M. J., Kurz, W. A., Luxmoore, R. J.et al. (1993). Boreal forest and tundra. Water, Air and Soil Pollution, 70, 39–53CrossRefGoogle Scholar
Armesto, J. J., Rozzi, R., Smith-Ramírez, C., and Arroyo, M. T. K. (1998). Conservation targets in South American temperate forests. Science, 282, 1271–2CrossRefGoogle Scholar
Arroyo, M. T. K. (1997). Sustainable forestry and biodiversity conservation in the Río Cóndor Project. In Nature and Human Society. The Quest for a Sustainable World, ed. Raven, P. H.. Washington, DC: US National Academy of Sciences Press, pp. 530–42Google Scholar
Arroyo, M. T. K. and Cavieres, L. (1997). The mediterranean-type climate flora of Central Chile: what do we know and how can we assure its protection. Noticiero de Biología, 5(2), 48–56Google Scholar
Arroyo, M. T. K., Donoso, C., Murúa, R. et al. (1996a). Toward an Ecologically Sustainable Forestry Project. Concepts, Analysis and Recommendations. Protecting Biodiversity and Ecosystem Processes in the Río Cóndor Project – Tierra del Fuego. Departmento de Investigación y Desarrollo, University of Chile
Arroyo, M. T. K., Riveros, M., Peñaloza, A., Cavieres, L., and Faggi, A. M. (1996b). Phytogeographic relationships and regional richness patterns of the cool temperate rainforest flora of southern South America. In High-Latitude Rainforests and Associated Ecosystems of the West Coasts of the Americas. Climate, Hydrology, Ecology and Conservation, eds. Lawford, R. G., Alaback, P. B., and Fuentes, E.. New York: Springer Verlag, pp. 134–72Google Scholar
Auer, V. (1958). Wissenschaftliche Ergebnisse der Finnischen Expeditionen nach Patagonien 1937–38 und der Finnisch-Argentinischen Expeditionen 1947–53. Helsinki, Finland: Annales Academiae Scientiarum FennicaeGoogle Scholar
CCB (CONAF–CONAMA–BIRF): Corporación National Forestal–Comisión Nacional del Medio Ambiente–Banco International de Reconstrucción y Fomento) (1999). Catastro y Evaluación de Recursos Vegetacionales Nativos de Chile, 14 vol. Santiago de Chile: CONAF and CONAMA
di Castri, F. and Hajek, E. R. (1976). Bioclimatología de Chile. Dirección de Investigación, Vicerectoría Académica, Universidad Católica de Chile, Santiago
Dillehay, T. (1989). Monte Verde: a Late Pleistocene Settlement in Chile, vol. 1, Palaeoenvironment and Site Context. Washington, DC: Smithsonian Institution PressGoogle Scholar
Dillehay, T. (1997). Monte Verde: a Late Pleistocene Settlement in Chile, vol. 2, The Archeological Context and Interpretation. Washington, DC: Smithsonian Institution PressGoogle Scholar
French, C. A. I. (2002). Geoarchaeology in Action: Studies in Soil Micromorphology and Landscape Evolution. London: RoutledgeGoogle Scholar
Galloway, D. (1995). Liquenes. Report made to the Río Cóndor Scientific Commission, Santiago, Chile
Godley, E. J. (1960). The botany of southern Chile in relation to New Zealand and the subantarctic. Proceedings of the Royal Society of London, 152, 457–72CrossRefGoogle Scholar
Gorham, E. (1991). Northern peatlands: role in the carbon cycle and probable responses to global warming. Ecological Applications, 1(2), 182–95CrossRefGoogle Scholar
Hauser, A. (1996). Los depósitos de turba en Chile y sus perspectivas de utilización. Revista Geológica de Chile, 23(2), 217–29Google Scholar
He, Si. (1998). A checklist of the mosses of Chile. Journal of Hattori Botanical Laboratory, 85, 103–89Google Scholar
Heusser, C. J. (1993). Late quaternary forest-steppe contact zone, Isla Grande de Tierra del Fuego, subantarctic South America. Quaternary Science Review, 12, 169–77CrossRefGoogle Scholar
Lappalainen, E. (1996). Global Peat Resources. UNESCO Geological Survey of Finland. Finland: International Peat SocietyGoogle Scholar
Lizarralde, M. S. (1993). Current status of introduced beaver (Castor canadensis) populations in Tierra del Fuego, Argentina. Ambio, 22(6), 351–8
Looser, G. (1952). Donatia fascicularis en la Cordillera de Nahuelbuta. Revista Universitaria (Universidad Católica de Chile), 37, 7–9Google Scholar
Meltzer, D. J., Grayson, D. K., Ardila, G.et al. (1997). On the Pleistocene antiquity of Monte Verde, southern Chile. American Antiquity, 62, 659–63CrossRefGoogle Scholar
Mitchell, A. D. and Wagstaff, S. J. (2000). Phylogeny and biogeography of the Chilean Pseudopanax laetevirens. New Zealand Journal of Botany, 38, 404–14CrossRefGoogle Scholar
Mitsch, W. J., Mitsch, R. H., and Turner, R. E. (1994). Wetlands of the Old and New Worlds: ecology and management. In Global Wetlands: Old World and New, ed. Mitsch, W. J.. Amsterdam, the Netherlands: Elsevier Science, pp. 3–56Google Scholar
Moore, D. M. (1979). Southern oceanic wet-healthland (including Magellanic moorland). In Ecosystems of the World, vol. 9A, ed. Specht, R. I. and Goodhall, D. W.. Amsterdam, the Netherlands: Elsevier ScienceGoogle Scholar
Moore, D. M. (1983). The Flora of Tierra del Fuego. Oswestry, UK: Anthony NelsonGoogle Scholar
Muñoz-Schick, M., Nuñez, H., and Yánez, J. (1996). Libro Rojo de los Sitios Prioritarios para la Conservación de la Diversidad Biológica en Chile. Santiago, Chile: Ministerio de Agricultura, CONAFGoogle Scholar
Pisano, E. (1977). Fitogeográfia de Fuego-Patagonia chilena. I. Comunidades vegetales entre las latitudes 52 y 56°S. Anales del Instituto de la Patagonia (Chile), 8, 121–250Google Scholar
Pisano, E. (1981). Bosquejo fitogeográfico de Fuego-Patagonia. Anales del Instituto de la Patagonia (Chile), 12, 159–71Google Scholar
Pisano, E. (1983). The Magellanic tundra complex. In Ecosystems of the World, vol. 4B, Mires: Swamp, Bog, Fen and Moor, ed. Gore, A. P. J.. Amsterdam, the Netherlands: Elsevier Science, pp. 295–329Google Scholar
Ramírez, C. (1968). Die vegetation der Moore der Cordillera Pelada (Chile). Berichte Oberhessischen Gesellschaft für Natur und Heilkunde, Naturwissenschaftliche Abteilung, 36, 95–101Google Scholar
Renner, S. S., Murray, D., and Foreman, D. (2000). Timing transantarctic junctions in the Atherospermataceae (Laurales): evidence from coding and noncoding chloroplast sequences. Systematic Biology, 49(3), 579–91CrossRefGoogle Scholar
Ruthsatz, B. and Villagrán, C. (1991). Vegetation pattern and soil nutrients of a Magellanic moorland on the Cordillera de Piuchué, Chiloé Island, Chile. Revista Chilena de Historia Natural, 64, 461–78Google Scholar
Schlatter, R., Venegas, C. and Torres-Mura, J. C. (1995). Ornitología. Report made to the Río Cóndor Scientific Commission, Santiago, Chile
Seberg, O. (1988). Taxonomy, phylogeny, and biogeography of the genus Oreobolus R. Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society, 96, 119–95CrossRefGoogle Scholar
Sielfeld, K. and Venegas, C. (1980). Poblamiento e impacto ambiental de Castor canadensis Kuhl, en Isla Navarino, Chile. Anales del Instituto de la Patagonia (Chile), 11, 247–57Google Scholar
Swenson, U., Backlund, A., McLoughlin, S., and Hill, R. S. (2001). Nothofagus biogeography revisited with special emphasis on the enigmatic distribution of subgenus Brassospora in New Caledonia. Cladistics, 17, 28–47CrossRefGoogle Scholar
Tuhkanen, S., Kuokka, I., Hyvonen, J., Stenroos, S., and Nicmels, J. (1990). Tierra del Fuego as a target for biogeographical research past and present. Anales del Instituto de la Patagonia (Chile), 19(2), 1–107Google Scholar
Villagrán, C. (1988). Expansion of Magellanic moorland during the late Pleistocene: palynological evidence from northern Isla de Chiloé, Chile. Quaternary Research, 29, 294–306Google Scholar
Wagstaff, S. J. and Wege, J. (2002). Patterns of diversification in New Zealand Stylidiaceae. American Journal of Botany, 89, 865–74CrossRefGoogle ScholarPubMed
Wagstaff, S. J., Martinsson, K., and Swenson, U. (2000). Divergence estimates of Tetrachondra hamiltonii and T. patagonica (Tetrachondraceae) and their implications for austral biogeography. New Zealand Journal of Botany, 38, 595–606CrossRefGoogle Scholar
Willson, M., Sabag, C., and Traveset, A. (1995). Interacciones planta-animal. Report made to the Río Cóndor Scientific Commission, Santiago, Chile
Winkworth, R. C., Wagstaff, S., Glenny, D., and Lockhart, P. J. (2002). Plant dispersal N.E.W.S. from New Zealand. Trends in Ecology and Evolution, 17, 514–20CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×