Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-29T05:54:58.706Z Has data issue: false hasContentIssue false

12 - Species and speciation

Published online by Cambridge University Press:  11 August 2009

Christopher H. Haufler
Affiliation:
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
Tom A. Ranker
Affiliation:
University of Colorado, Boulder
Christopher H. Haufler
Affiliation:
University of Kansas
Get access

Summary

Introduction

Two of the most basic elements of evolutionary biology, species and speciation, are also among the most enigmatic and consistently debated. Systematists seem to have a love/hate relationship with both of these topics, and have devoted literally thousands of pages over the past century and a half to exploring what species are and how they originate. In this chapter, general aspects and contemporary perspectives on species and speciation in ferns and lycophytes will be discussed and interpreted.

Are species real or imagined?

When studying biodiversity, a fundamental question that emerges is, “Do species exist?” Why is the variety of life on earth subdivided into a set of discontinuous and distinct groups rather than existing as a seamless series of intergrading populations? Although this appears to be a central question for biologists to answer, prominent authorities consider it to be “one of the most intriguing unsolved problems of evolutionary biology” (Coyne and Orr, 2004). How do the clearly observable distinctions between the groups we label species arise, and what maintains separate ancestor–descendant lineages through time and space? According to some scientists (including Charles Darwin), species may be arbitrary human constructs erected for our convenience (see also Raven, 1976; Mishler and Donoghue, 1982). On the other hand, we can all detect and give names to non-overlapping distinctions among natural populations of organisms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adjie, B., Masuyama, S., Ishikawa, H., and Watano, Y. (2007). Independent origins of tetraploid cryptic species in the fern Ceratopteris thalictroides. Journal of Plant Research, 120, 129–138.CrossRefGoogle ScholarPubMed
Barrington, D. S. (1990). Hybridization and allopolyploidy in Central American Polystichum: cytological and isozyme documentation. Annals of the Missouri Botanical Garden, 77, 297–305.CrossRefGoogle Scholar
Barrington, D. S. (1993). Ecological and historical factors in fern biogeography. Journal of Biogeography, 20, 275–279.CrossRefGoogle Scholar
Barrington, D. S., and Conant, D. S. (1989). Breeding system, genetic distance, and hybridization in Alsophila. American Journal of Botany, 76, Supplement, 201 (abstract).Google Scholar
Barrington, D. S., Haufler, C. H., and Werth, C. R. (1989). Hybridization, reticulation and species concepts in the ferns. American Fern Journal, 79, 55–64.CrossRefGoogle Scholar
Benham, D. M. and Windham, M. D. (1992). Generic affinities of the star-scaled cloak ferns. American Fern Journal, 82, 47–58.CrossRefGoogle Scholar
Bennert, W., Lubiensky, M., Körner, S., and Steinberg, M. (2005). Triploidy in Equisetum subgenus Hippochaete (Equisetaceae, Pteridophyta). Annals of Botany, 95, 807–815.CrossRefGoogle Scholar
Berlin, B., Breedlove, D. E., and Raven, P. R. (1966). Folk taxonomies and biological classification. Science, 154, 273–275.CrossRefGoogle ScholarPubMed
Blasdell, R. F. (1963). A monographic study of the fern genus Cystopteris. Memoirs of the Torrey Botanical Club, 21, 1–102.Google Scholar
Bruce, J. G. (1975). Systematics and morphology of subgenus Lepidotis of the genus Lycopodium (Lycopodiaceae). Unpublished Ph.D. Thesis, University of Michigan, Ann Arbor, MI.Google Scholar
Butters, F. K. (1917). Taxonomic and geographic studies in North American ferns. I. The genus Athyrium and the North American ferns allied to Athyrium filix-femina. Rhodora, 19, 169–207.Google Scholar
Carlson, T. J. (1979). The comparative ecology and frequencies of interspecific hybridization of Michigan woodferns. Michigan Botanist, 18, 47–56.Google Scholar
Conant, D. S. (1990). Observations on the reproductive biology of Alsophila species and hybrids (Cyatheaceae). Annals of the Missouri Botanical Garden, 77, 290–296.CrossRefGoogle Scholar
Conant, D. S. and Cooper-Driver, G. (1980). Autogamous allohomoploidy in Alsophila and Nephelea (Cyatheaceae): a new hypothesis for speciation in homoploid homosporous ferns. American Journal of Botany, 67, 1269–1288.CrossRefGoogle Scholar
Coyne, J. A. and Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer.Google Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. London: J. Murray.Google Scholar
De Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation. In Endless Forms: Species and Speciation, ed. Howard, D. J. and Berlocher, S. H.. Oxford: Oxford University Press, pp. 57–75.Google Scholar
Diamond, J. M. (1966). Zoological classification system of a primitive people. Science, 151, 1102–1104.CrossRefGoogle ScholarPubMed
Flora of North America Editorial Committee (eds.) (1993). Flora of North America North of Mexico, Vol. 2. New York: Oxford University Press.
Gastony, G. J. (1983). The Pellaea glabella complex: electrophoretic evidence for the derivations of the agamosporous taxa and a revised taxonomy. American Fern Journal, 78, 44–67.CrossRefGoogle Scholar
Gastony, G. J. (1986). Electrophoretic evidence for the origin of fern species by unreduced spores. American Journal of Botany, 73, 1563–1569.CrossRefGoogle Scholar
Gastony, G. J. and Windham, M. D. (1989). Species concepts in pteridophytes: the treatment and definition of agamosporous species. American Fern Journal, 79, 65–77.CrossRefGoogle Scholar
Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1–34.CrossRefGoogle Scholar
Grant, V. (1981). Plant Speciation. New York: Columbia University Press.Google Scholar
Haufler, C. H. (1987). Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. American Journal of Botany, 74, 953–966.CrossRefGoogle Scholar
Haufler, C. H. (1989). Toward a synthesis of evolutionary modes and mechanisms in homosporous pteridophytes. Biochemical Systematics and Ecology, 17, 109–115.CrossRefGoogle Scholar
Haufler, C. H. (1996). Species concepts and speciation in pteridophytes. In Pteridology in Perspective, ed. Camus, J. M., Gibby, M., and Johns, R. J.. Kew: Royal Botanic Gardens, pp. 291–305.Google Scholar
Haufler, C. H. (1997). Modes and mechanisms of speciation in pteridophytes. In Evolution and Diversification of Land Plants, ed. Iwatsuki, K. and Raven, P. H.. Tokyo: Springer-Verlag, pp. 291–308.CrossRefGoogle Scholar
Haufler, C. H. (2002). Homospory 2002: an odyssey of progress in pteridophyte genetics and evolutionary biology. Bioscience, 52, 1081–1093.CrossRefGoogle Scholar
Haufler, C. H. (2007). Genetics, phylogenetics, and biogeography: considering how shifting paradigms and continents influence fern diversity. Brittonia, 59, 108–114.CrossRefGoogle Scholar
Haufler, C. H. and Ranker, T. A. (1995). rbcL sequences provide phylogenetic insights among sister species of the fern genus Polypodium. American Fern Journal, 85, 359–372.CrossRefGoogle Scholar
Haufler, C. H. and Windham, M. D. (1991). New species of North American Cystopteris and Polypodium, with comments on their reticulate relationships. American Fern Journal, 81, 6–22.CrossRefGoogle Scholar
Haufler, C. H., Windham, M. D., Britton, D. M., and Robinson, S. J. (1985). Triploidy and its evolutionary significance in Cystopteris protrusa. Canadian Journal of Botany, 63, 1855–1863.CrossRefGoogle Scholar
Haufler, C. H., Windham, M. D., and Ranker, T. A. (1990). Biosystematic analysis of the Cystopteris tennesseensis complex. Annals of the Missouri Botanical Garden, 77, 314–329.CrossRefGoogle Scholar
Haufler, C. H., Windham, M. D., and Rabe, E. W. (1995a)). Reticulate evolution in the Polypodium vulgare complex. Systemetic Botany, 20, 89–109.CrossRefGoogle Scholar
Haufler, C. H., Soltis, D. E., and Soltis, P. S. (1995b). Phylogeny of the Polypodium vulgare complex: insights from chloroplast DNA restriction site data. Systematic Botany, 20, 110–119.CrossRefGoogle Scholar
Haufler, C. H., Hooper, E. A., and Therrien, J. P. (2000). Modes and mechanisms of speciation in pteridophytes: implications of contrasting patterns in ferns representing temperate and tropical habitats. Plant Species Biology, 15, 223–236.CrossRefGoogle Scholar
Hauk, W. D. and Haufler, C. H. (1999). Isozyme variability among cryptic species of Botrychium subgenus Botrychium (Ophioglossaceae). American Journal of Botany, 86, 614–633.CrossRefGoogle Scholar
Hey, J. (2006). Recent advances in assessing gene flow between diverging populations and species. Current Opinion in Genetics and Development, 16, 592–596CrossRefGoogle ScholarPubMed
Hickey, R. J. (1984). Chromosome numbers in neotropical Isöetes. American Fern Journal, 74, 9–13.CrossRefGoogle Scholar
Hickey, R. J., Taylor, W. C., and Luebke, N. T. (1989). The species concept in Pteridophyta with special reference to Isöetes. American Fern Journal, 79, 78–89.CrossRefGoogle Scholar
Hooper, E. A. and Haufler, C. H. (1997). Genetic diversity and breeding system in a group of neotropical epiphytic ferns (Pleopeltis; Polypodiaceae). American Journal of Botany, 84, 1664–1674.CrossRefGoogle Scholar
Jermy, A. C. and Walker, T. G. (1985). Cytotaxonomic studies of the ferns of Trinidad. Bulletin of the British Museum (Natural History), Botany, 13, 133–276.Google Scholar
Kato, M. (1993). Biogeography of ferns: dispersal and vicariance. Journal of Biogeography, 20, 265–274.CrossRefGoogle Scholar
Kelloff, C., Skog, J., Adamkewicz, L., and Werth, C. R. (2002). Differentiation of two taxa of eastern North American Athyrium: evidence from allozymes and spores. American Fern Journal, 92, 185–213.CrossRefGoogle Scholar
Kluge, J. and Kessler, M. (2006). Fern endemism and its correlates: contribution from an elevational transect in Costa Rica. Diversity and Distributions, 12, 535–545.CrossRefGoogle Scholar
Kurihara, T., Watano, Y., Takamiya, M., and Shimizu, T. (1996). Electrophoretic and cytological evidence for genetic heterogeneity and hybrid origin of Athyrium oblitescens. Journal of Plant Research, 109, 29–36.CrossRefGoogle Scholar
Lang, F. A. (1971). The Polypodium vulgare complex in the Pacific Northwest. Madroño, 21, 235–254.Google Scholar
Lieberman, D., Lieberman, M., Peralta, R., and Hartshorn, G. S. (1996). Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. The Journal of Ecology, 84, 137–152.CrossRefGoogle Scholar
Lloyd, R. M. and Lang, F. A. (1964). The Polypodium vulgare complex in North America. British Fern Gazette, 9, 168–177.Google Scholar
Lovis, J. D. (1977). Evolutionary patterns and processes in ferns. In Advances in Botanical Research, Vol. 4, ed. Preston, R. D. and Woolhouse, H. W.. London: Academic Press, pp. 229–415.Google Scholar
Manton, I. (1950). Problems of Cytology and Evolution in the Pteridophyta. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Marcon, A. B., Barros, I. C. L., and Guerra, M. (2005). Variation in chromosome numbers, CMA Bands and 45S rDNA sites in species of Selaginella (Pteridophyta). Annals of Botany, 95, 271–276.CrossRefGoogle Scholar
Martens, P. (1943). Les organes gladuleux de Polypodium virginianum (P. vulgare var. virginianum). I. Valeur systématique et répartition géographique. Bulletin du Jardin Botanique de L'État, Bruxelles, 17, 1–14.CrossRefGoogle Scholar
Masuyama, S. (1979). Reproductive biology of the fern Phegopteris decursive-pinnata. I. The dissimilar mating systems of diploids and tetraploids. Botanical Magazine (Tokyo), 92, 275–289.CrossRefGoogle Scholar
Masuyama, S. and Watano, Y. (2005). Cryptic species in the fern Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae). II. Cytological characteristics of three cryptic species. Acta Phytotaxonomica et Geobotanica, 56, 231–240.Google Scholar
Masuyama, S., Yatabe, Y., Murakami, N., and Watano, Y. (2002). Cryptic species in the fern Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae). I. Molecular analyses and crossing tests. Journal of Plant Research, 115, 87–97.CrossRefGoogle ScholarPubMed
Mayden, R. L. (1997). A hierarchy of species concepts: the denouement in the saga of the species problem. In Species: The Units of Biodiversity, ed. Claridge, M. F., Dawah, A. H., and Wilson, M. R.. London: Chapman and Hall, pp. 381–424.Google Scholar
Mayr, E. (1942). Systematics and the Origin of Species. New York: Columbia University Press.Google Scholar
Mayr, E. (1969). The biological meaning of species. Biological Journal of the Linnean Society, 1, 311–320.CrossRefGoogle Scholar
Mishler, B. D. and Donoghue, M. J. (1982). Species concepts: a case for pluralism. Systematic Zoology, 31, 491–503.CrossRefGoogle Scholar
Moran, R. C. and Smith, A. R. (2001). Phytogeographic relationships between neotropical and African-Madagascan pteridophytes. Brittonia, 53, 304–351.CrossRefGoogle Scholar
Mullenniex, A., Hardig, T. M., and Mesler, M. R. (1998). Molecular confirmation of hybrid swarms in the fern genus Polystichum (Dryopteridaceae). Systematic Botany, 23, 421–426.CrossRefGoogle Scholar
Øllgaard, B. (1987). A revised classification of the Lycopodiaceae s. lat. Opera Botanica, 92, 153–178.Google Scholar
Orr, M. R. and Smith, T. B. (1998). Ecology and speciation. Trends in Ecology and Evolution, 13, 502–506.CrossRefGoogle ScholarPubMed
Otto, S. P. and Whitton, J. (2000). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437.CrossRefGoogle ScholarPubMed
Paris, C. A. and Windham, M. D. (1988). A biosystematic investigation of the Adiantum pedatum complex in eastern North America. Systematic Botany, 13, 240–255.CrossRefGoogle Scholar
Paris, C. A., Wagner, F. S., and Wagner, W. H. (1989). Cryptic species, species delimitation, and taxonomic practice in the homosporous ferns. American Fern Journal, 79, 46–54.CrossRefGoogle Scholar
Parks, C. R., Wendel, J. F., Sewell, M. M., and Qiu, Y.-L. (1994). The significance of allozyme variation and introgression in the Liriodendron tulipifera complex (Magnoliaceae). American Journal of Botany, 81, 878–889.CrossRefGoogle Scholar
Phipps, C. J., Taylor, T. N., Taylor, E. L., Cuneo, N. R., Boucher, L. D., and Yao, X. (1998). Osmunda (Osmundaceae) from the Triassic of Antarctica: an example of evolutionary stasis. American Journal of Botany, 85, 888–895.CrossRefGoogle ScholarPubMed
Pryer, K. M. and Haufler, C. H. (1993). Isozymic and chromosomal evidence for the allotetraploid origin of Gymnocarpium dryopteris (Dryopteridaceae). Systematic Botany, 18, 150–172.CrossRefGoogle Scholar
Rabe, E. W. and Haufler, C. H. (1992). Incipient polyploid speciation in the maidenhair fern (Adiantum pedatum; Adiantaceae). American Journal of Botany, 79, 701–707.CrossRefGoogle Scholar
Ranker, T. A. (1992a). Genetic diversity of endemic Hawaiian epiphytic ferns: implications for conservation. Selbyana, 13, 131–137.Google Scholar
Ranker, T. A. (1992b). Genetic diversity, mating systems, and interpopulational gene flow in neotropical Hemionitis palmata L. (Adiantaceae). Heredity, 69, 175–183.CrossRefGoogle Scholar
Ranker, T. A. (1994). Evolution of high genetic variability in the rare Hawaiian fern Adenophorus periens and implications for conservation management. Biological Conservation, 70, 19–24.CrossRefGoogle Scholar
Ranker, T. A., Floyd, S. K., Windham, M. D., and Trapp, P. G. (1994). Historical biogeography of Asplenium adiantum-nigrum (Aspleniaceae) in North America and implications for speciation theory in homosporous pteridophytes. American Journal of Botany, 81, 776–781CrossRefGoogle Scholar
Ranker, T. A., Gemmill, C. E. C., Trapp, P. G., Hambleton, A., and Ha, K. (1996). Population genetics and reproductive biology of lava-flow colonising species of Hawaiian Sadleria (Blechnaceae). In Pteridology in Perspective, ed. Camus, J. M., Gibby, M., and Johns, R. J.. Kew: Royal Botanic Gardens, pp. 581–598.Google Scholar
Raven, P. H. (1976). Systematics and plant population biology. Systematic Botany, 1, 284–316.CrossRefGoogle Scholar
Richardson, B. A., Richardson, M. J., Scatena, F. N., and McDowell, W. H. (2000). Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. Journal of Tropical Ecology, 16, 167–188.CrossRefGoogle Scholar
Rieseberg, L. H. and Burke, J. M. (2001). The biological reality of species, gene flow, selection, and collective evolution. Taxon, 50, 47–67.CrossRefGoogle Scholar
Sarvella, J. (1978). A synopsis of the fern genus Gymnocarpium. Annales Botanici Fennici, 15, 101–106.Google Scholar
Sarvella, J. (1980). Gymnocarpium hybrids from Canada and Alaska. Annales Botanici Fennici, 17, 292–295.Google Scholar
Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallón, S., and Lupia, R. (2004). Ferns diversified in the shadow of angiosperms. Nature, 428, 553–557.CrossRefGoogle ScholarPubMed
Schneller, J. J. (1979). Biosystematic investigations on the lady fern (Athyrium filix-femina). Plant Systematics and Evolution, 132, 255–277.CrossRefGoogle Scholar
Schneller, J. J. (1981), Evidence for intergeneric incompatibility in ferns. Plant Systematics and Evolution, 137, 45–56.CrossRefGoogle Scholar
Schneller, J. J. (1989). Remarks on hereditary regulation of spore wall pattern in intra- and interspecific crosses of Athyrium. Botanical Journal of the Linnean Society, 99, 115–123.CrossRefGoogle Scholar
Sciarretta, K. L., Arbuckle, E. P., Werth, C. R., and Haufler, C. H. (2005). Patterns of genetic variation in southern Appalachian populations of Athyrium filix-femina var. asplenioides (Dryopteridaceae). International Journal of Plant Science, 166, 761–780.CrossRefGoogle Scholar
Shivas, M. G. (1961). Contributions to the cytology and taxonomy of Polypodium in Europe and America. I. Cytology. Botanical Journal of the Linnean Society, 58, 13–25.CrossRefGoogle Scholar
Simpson, G. G. (1961). Principles of Animal Taxonomy. New York: Columbia University Press.Google Scholar
Sites, J. D. and Marshall, J. C. (2003). Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology and Evolution, 18, 462–470.CrossRefGoogle Scholar
Soltis, D. E. and Rieseberg, L. H. (1986). Autopolyploidy in Tolmiea menziezii (Saxifragaceae): evidence from enzyme electrophoresis. American Journal of Botany, 73, 1171–1174.CrossRefGoogle Scholar
Soltis, D. E. and Soltis, P. S. (1988). Estimated rates of intragametophytic selfing in lycopods. American Journal of Botany, 75, 248–256.CrossRefGoogle Scholar
Soltis, D. E. and Soltis, P. S. (1989). Polyploidy, breeding systems, and genetic differentiation in homosporous pteridophytes. In Isozymes in Plant Biology, ed. Soltis, D. E. and Soltis, P. S.. Portland, OR: Dioscorides Press, pp. 241–258.Google Scholar
Soltis, P. S., Soltis, D. E. and Wolf, P. G. (1990). Allozymic divergence in North American Polystichum (Dryopteridaceae). Systematic Botany, 15, 205–215.CrossRefGoogle Scholar
Soltis, D. E., Soltis, P. S., and Tate, J. A. (2003). Advances in the study of polyploidy since Plant Speciation. New Phytologist, 161, 173–191.CrossRefGoogle Scholar
Somers, P. and Buck, W. R. (1975). Selaginella ludoviciana, S. apoda and their hybrids in the southeastern United States. American Fern Journal, 65, 76–82.CrossRefGoogle Scholar
Taylor, W. C. and Hickey, R. J. (1992). Habitat, evolution, and speciation in Isöetes. Annals of the Missouri Botanical Garden, 79, 613–622.CrossRefGoogle Scholar
Taylor, W. C., Luebke, N. T., and Smith, M. B.. (1985). Speciation and hybridization in North American quillworts. Proceedings of the Royal Society of Edinburgh, 86B, 259–263.Google Scholar
Terborgh, J. (1985). The vertical component of plant species diversity in temperate and tropical forests. The American Naturalist, 126, 760–776.CrossRefGoogle Scholar
Trewick, S. A., Morgan-Richards, M., Russell, S. J., Henderson, S., Rumsey, F. J., Pintér, J. A., Barrett, J. A., Gibby, M., and Vogel, J. C. (2002). Polyploidy, phylogeography and Pleistocene refugia of the rockfern Asplenium ceterach: evidence from chloroplast DNA. Molecular Ecology, 11, 2003–2012.CrossRefGoogle ScholarPubMed
Tryon, R. M. (1955). Selaginella rupestris and its allies. Annals of the Missouri Botanical Garden, 42, 1–99.CrossRefGoogle Scholar
Tryon, R. (1971). The process of evolutionary migration in species of Selaginella. Brittonia, 23, 89–100.CrossRefGoogle Scholar
Tryon, A. F. and Britton, D. M. (1958). Cytotaxonomic studies on the fern genus Pellaea. Evolution, 12, 137–145CrossRefGoogle Scholar
Tuomisto, H., Poulsen, A. D. O., and Moran, R. C. (1998). Edaphic distribution of some species of the fern genus Adiantum in western Amazonia. Biotropica, 30, 392–399.CrossRefGoogle Scholar
Tuomisto, H., Ruokolainen, K., Poulsen, A. D., Moran, R. C., Quintana, C., Cañas, G., and Celi, J. (2002). Distribution and diversity of pteridophytes and Melastomataceae along edaphic gradients in Yasuní National Park, Ecuadorian Amazonia. Biotropica, 34, 516–533.Google Scholar
Tuomisto, H., Ruokolainen, K., Aguilar, M., and Sarmiento, A. (2003). Floristic patterns along a 43-km long transect in an Amazonian rain forest. Journal of Ecology, 91, 743–756.CrossRefGoogle Scholar
Vogel, J. C., Russell, S. J, Barrett, J. A., and Gibby, M. (1996). A non-coding region of chloroplast DNA as a tool to investigate reticulate evolution in European Asplenium. In Pteridology in Perspective, ed. Camus, J. M., Gibby, M., and Johns, R. J.. Kew: Royal Botanic Gardens, pp. 313–327.Google Scholar
Wagner, W. H. Jr. (1954). Reticulate evolution in the Appalachian aspleniums. Evolution, 8, 103–118.CrossRefGoogle Scholar
Wagner, D. H. (1979). Systematics of Polystichum in western North America, north of Mexico. Pteridologia, 1, 1–64.Google Scholar
Wagner, F. S. (1992). Cytological problems in Lycopodium sens. lat. Annals of the Missouri Botanical Garden, 79, 718–729.CrossRefGoogle Scholar
Walker, S. (1955). Cytogenetic studies in the Dryopteris spinulosa complex I. Watsonia, 3, 193–209.Google Scholar
Walker, T. G. (1958). Hybridization in some species of Pteris L. Evolution, 12, 82–92.CrossRefGoogle Scholar
Walker, S. (1961). Cytogenetic studies in the Dryopteris spinulosa complex. II. American Journal of Botany, 48, 607–614.CrossRefGoogle Scholar
Walker, T. G. (1962). Cytology and evolution in the fern genus Pteris L. Evolution, 16, 27–43.CrossRefGoogle Scholar
Walker, T. G. (1984). Chromosomes and evolution in pteridophytes. In Chromosomes in Evolution of Eukaryotic Groups, Vol. 2, ed. Sharma, A. K. and Sharma, A.. Boca Raton, FL: CRC Press.Google Scholar
Wallace, A. R. (1858). On the tendency of varieties to depart indefinitely from the original type. Journal of the Proceedings of the Linnean Society (Zoology), 3, 53–62.Google Scholar
Watkins, J. E., Cardelus, C., Colwell, R. K., and Moran, R. C. (2006). Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Journal of Botany, 93, 73–83.CrossRefGoogle Scholar
Werth, C. R. (1989). The use of isozyme data for inferring ancestry of polyploid species of pteridophytes. Biochemical Systematics and Ecology, 17, 117–130.CrossRefGoogle Scholar
Werth, C. R. (1991). Isozyme studies on the Dryopteris “spinulosa” complex, I: the origin of the log fern Dryopteris celsa. Systematic Botany, 10, 184–192.CrossRefGoogle Scholar
Werth, C. R. and Windham, M. D. (1991). A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate gene expression. American Naturalist, 137, 515–526.CrossRefGoogle Scholar
Werth, C. R., Guttman, S. I. and Eshbaugh, W. H. (1985). Electrophoretic evidence of reticulate evolution in the Appalachian Asplenium complex. Systematic Botany, 16, 446–461.CrossRefGoogle Scholar
Whittemore, A. T. (1993). Species concepts: a reply to Mayr. Taxon, 42, 573–583.CrossRefGoogle Scholar
Wilce, J. H. (1965). Section Complanataof the genus Lycopodium. Nova Hedwigia, 19, 1–233.Google Scholar
Wiley, E. O. (1978). The evolutionary species concept reconsidered. Systematic Zoology, 27, 17–26.CrossRefGoogle Scholar
Wiley, E. O. and Mayden, R. (2000). The evolutionary species concept. In Species Concepts and Phylogenetic Theory: A Debate, ed. Wheeler, Q. D. and Meier, R.. New York: Columbia University Press, pp. 70–89.Google Scholar
Windham, M. D. (1987). Argyrochosma, a new genus of cheilanthoid ferns. American Fern Journal, 77, 37–41.CrossRefGoogle Scholar
Windham, M. D. and Yatskievych, G. (2003). Chromosome studies of cheilanthoid ferns (Pteridaceae: Cheilanthoideae) from the western United States and Mexico. American Journal of Botany, 90, 1788–1800.CrossRefGoogle ScholarPubMed
Wolf, P. G., Schneider, H., and Ranker, T. A. (2001). Geographic distributions of homosporous ferns: does dispersal obscure evidence of vicariance? Journal of Biogeography, 28, 263–270.CrossRefGoogle Scholar
Yatabe, Y., Masuyama, S., Darnaedi, D., and Murakami, N. (2001). Molecular systematics of the Asplenium nidus complex from Mt. Halimun National Park, Indonesia: evidence for reproductive isolation among three sympatric rbcL sequence types. American Journal of Botany, 88, 1517–1522.CrossRefGoogle ScholarPubMed
Yatskievych, G. and Moran, R. C. (1989). Primary divergence and species concepts in ferns. American Fern Journal, 79, 36–45.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×