Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T22:50:05.097Z Has data issue: false hasContentIssue false

12 - Unravelling body plan and axial evolution in the Bilateria with molecular phylogenetic markers

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

SETTING THE PROBLEM

The emergence of dramatic morphological differences (disparity) and the ensuing bewildering increase in the number of species (diversity) documented in the fossil record at key stages of animal and plant evolution have defied, and still defy, the explanatory powers of Darwin's theory of evolution by natural selection. Among the best examples that have captured the imagination of the layman and the interest of scores of scientists for 150 years are the origins of land plants from aquatic green plants, of flowering plants from seed plants, of chordates from non-chordates and of tetrapod vertebrates from non-tetrapods; and the conquest of the land by amphibians; the emergence of endotherms from ectotherm animals; the recurrent invention of flight (e.g. in arthropods, birds and mammals) from non-flying ancestors; and the origin of aquatic mammals from four-legged terrestrial ancestors.

Key morphological transitions pose a basic difficulty: reconstruction of ancestral traits of derived clades is problematic because of a lack of transitional forms in the fossil record and obscure homologies between ‘ancestral’ and derived groups. Lack of transitional forms, in other words gaps in the fossil record, brought into question one of the basic tenets of Darwin's theory, namely gradualism, as Darwin himself acknowledged. Since Darwin, however, and especially in the past 50 years, numerous examples that may reflect transitional stages between major groups of organisms have accumulated.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 217 - 238
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adoutte, A., Balavoine, G., Lartillot, N. & Rosa, R. 1999. Animal evolution: the end of intermediate taxa?Trends in Genetics 15, 104–108.CrossRefGoogle ScholarPubMed
Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S.et al. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493.CrossRefGoogle ScholarPubMed
Arendt, D., Technau, U. & Wittbrodt, J. 2001. Evolution of the bilaterian larval foregut. Nature 409, 81–85.CrossRefGoogle ScholarPubMed
Ax, P. 1996. Multicellular Animals. A New Approach to the Phylogenetic Order in Nature, Vol. 1. Berlin: Springer.Google Scholar
Baguñà, J. & Riutort, M. 2004. The dawn of bilaterian animals: the case of the acoelomorph flatworms. BioEssays 26, 1046–1057.CrossRefGoogle ScholarPubMed
Blair, J. E., Ikeo, K., Gojobori, T. & Hedges, S. B. 2002. The evolutionary position of nematodes. BMC Evolutionary Biology 2, 7.CrossRefGoogle ScholarPubMed
Brooke, N. M., García-Fernández, J. & Holland, P. W. H. 1998. The ParaHox gene cluster is an evolutionary sister of the Hox cluster. Nature 392, 920–922.CrossRefGoogle Scholar
Budd, G. E. 2003. The Cambrian fossil record and the origin of phyla. Integrative & Comparative Biology 43, 157–165.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 2006. Hooking some stem-group ‘worms’: fossil lophotrochozoans in the Burgess Shale. BioEssays 28, 1161–1166.CrossRefGoogle ScholarPubMed
Carroll, S. B., Grenier, H. J. K. & Weatherbee, S. D. 2001. From DNA to Diversity. Malden: Blackwell Science.Google Scholar
Chourrout, D., Delsuc, F., Chourrout, P.et al. 2006. Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442, 684–687.CrossRefGoogle ScholarPubMed
Conway, Morris S. 2006. Darwin's dilemma: the realities of the Cambrian ‘explosion’. Philosophical Transactions of the Royal Society of London B 361, 1069–1083.CrossRefGoogle Scholar
Cook, C. E., Jiménez, E., Akam, M. & Saló, E. 2004. The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evolution & Development 6, 154–163.CrossRefGoogle ScholarPubMed
Jong, D. M., Hislop, N. R., Hayward, D. C.et al. 2006. Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a ‘radiate’ animal, the anthozoan cnidarian Acropora millepora. Developmental Biology 298, 632–643.CrossRefGoogle ScholarPubMed
Robertis, D. M. & Sasai, Y. 1996. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40.CrossRefGoogle ScholarPubMed
Donoghue, M. J. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31, 77–93.CrossRefGoogle Scholar
Dopazo, H., Santoyo, J. & Dopazo, J. 2004. Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics 20 (supplement 1), i116–i121.CrossRefGoogle ScholarPubMed
Erwin, D. H. & Davidson, E. H. 2002. The last common bilaterian ancestor. Development 129, 3021–3032.Google ScholarPubMed
Extavour, C. G., Pang, K., Matus, D. Q. & Martindale, M. Q. 2005. vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evolution & Development 7, 201–215.CrossRefGoogle Scholar
Finnerty, J. R. & Martindale, M. Q. 1999. Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria. Evolution & Development 1, 16–23.CrossRefGoogle ScholarPubMed
Finnerty, J. R., Pang, K., Burton, P., Paulson, D. & Martindale, M. Q. 2004. Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 304, 1335–1337.CrossRefGoogle Scholar
Glenner, H., Hansen, A. J., Sorensen, M. V.et al. 2004. Bayesian inference of the Metazoan phylogeny: a combined molecular and morphological approach. Current Biology 14, 1644–1649.CrossRefGoogle ScholarPubMed
Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C. & Niehrs, C. 1997. Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389, 517–519.CrossRefGoogle ScholarPubMed
Gould, S. J. 1989. Wonderful Life: The Burgess Shale and the Nature of History. New York: W.W. Norton.Google Scholar
Guder, C., Pinho, S., Nascak, T. G.et al. 2006. An ancient Wnt-Dickkopf antagonism in Hydra. Development 133, 901–911.CrossRefGoogle ScholarPubMed
Halanych, K. M., Bachelor, J., Aguinaldo, A. M. A.et al. 1995. 18S rDNA evidence that lophophorates are protostome animals. Science 267, 1641–1643.CrossRefGoogle ScholarPubMed
Hayward, D. C., Samuel, G., Pontynen, P. C., Catmull, J. & Saint, R. 2002. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proceedings of the National Academy of Sciences of the USA 99, 8106–8111.CrossRefGoogle Scholar
Holland, L. Z. 2000. Body-plan evolution in the Bilateria: early anteroposterior patterning and the deuterostome–protostome dichotomy. Current Opinion in Genetics & Development 10, 434–442.CrossRefGoogle Scholar
Holland, N. D. 2003. Early central nervous system evolution: an era of skin brains?Nature Reviews Neuroscience 4, 1–11.CrossRefGoogle ScholarPubMed
Holland, P. W. H. 1998. Major transitions in animal evolution: a developmental genetic perspective. American Zoologist 38, 829–842.CrossRefGoogle Scholar
Hübner, C. 2006. Hox genes, homology and axis formation: The application of morphological concepts to evolutionary developmental biology. Theory in Biosciences 124, 371–396.CrossRefGoogle ScholarPubMed
Hyman, L. H. 1951. The Invertebrates, Vol. 2. Platyhelminthes and Rhynchocoela. New York: McGraw-Hill.Google Scholar
Jägersten, G. 1955. On the early phylogeny of the Metazoa. The bilaterogastrea theory. Zoologiska Bidrag från Uppsala 30, 321–354.Google Scholar
Jeffroy, O., Brinkmann, H., Delsuc, F. & Philippe, H. 2006. Phylogenomics: the beginning of incongruence?Trends in Genetics 22, 225–231.CrossRefGoogle ScholarPubMed
Jenner, R. A. 2000. Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evolution & Development 2, 208–221.CrossRefGoogle ScholarPubMed
Jiménez-Guri, E., Paps, J., Garcia-Fernàndez, J. & Saló, E. 2006. Hox and ParaHox genes in Nemertodermatida, a basal bilaterian clade. International Journal of Developmental Biology 50, 675–679.CrossRefGoogle ScholarPubMed
Jondelius, U., Ruiz-Trillo, I., Baguñà, J. & Riutort, M. 2002. The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zoologica Scripta 31, 201–215.CrossRefGoogle Scholar
Kamm, K., Schierwater, B., Jakob, W., Dellaporta, S. L. & Miller, D. J. 2006. Axial patterning and diversification in the Cnidaria predate the Hox system. Current Biology 16, 1–7.CrossRefGoogle ScholarPubMed
Kimmel, C. B. 1996. Was Urbilateria segmented? Trends in Genetics 12, 329–331.Google Scholar
Lartillot, N., Brinkmann, H. & Philippe, H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evolutionary Biology 7, supplement 1, S4.CrossRefGoogle ScholarPubMed
Lee, P. N., Pang, D., Matus, D. Q. & Martindale, M. Q. 2006. A WNT of things to come: evolution of Wnt signalling and polarity in cnidarians. Seminars in Cell & Developmental Biology 17, 157–167.CrossRefGoogle Scholar
Mallatt, J. & Giribet, G. 2007. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Molecular Phylogenetics and Evolution 40, 772–794.CrossRefGoogle Scholar
Marshall, C. R. 2006. Explaining the Cambrian ‘explosion’ of animals. Annual Review of Earth & Planetary Sciences 34, 355–384.CrossRefGoogle Scholar
Martindale, M. Q. 2005. The evolution of metazoan axial properties. Nature Reviews Genetics 6, 917–927.CrossRefGoogle ScholarPubMed
Martindale, M. Q., Pang, K. & Finnerty, J. R. 2004. Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131, 2463–2474.CrossRefGoogle Scholar
Matus, D. Q., Thomsen, G. H. & Martindale, M. Q. 2006. Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Current Biology 16, 499–505.CrossRefGoogle ScholarPubMed
Meinhardt, H. 2002. The radial-symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. BioEssays 24, 185–191.CrossRefGoogle ScholarPubMed
Nichols, S. A., Dirks, W., Pearse, J. S. & King, N. 2006. Early evolution of animal cell signalling and adhesion genes. Proceedings of the National Academy of Sciences USA 103, 12451–12456.CrossRefGoogle Scholar
Nielsen, C. & Martinez, P. 2003. Patterns of gene expression: homology or homocracy?Development, Genes & Evolution 213, 149–154.Google ScholarPubMed
Pasquinelli, A. E., McCoy, A., Jiménez, E.et al. 2003. Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution?Evolution & Development 5, 372–378.CrossRefGoogle ScholarPubMed
Peterson, K. J. 2005. Macroevolutionary interplay between planktic larvae and benthic predators. Geology 33, 929–932.CrossRefGoogle Scholar
Peterson, K. J., McPeek, M. A. & Evans, D. A. D. 2005. Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. Paleobiology 31 (supplement 2), 36–55.CrossRefGoogle Scholar
Philippe, H., Delsuc, F., Brinkmann, H. & Lartillot, N. 2005. Phylogenomics. Annual Review of Ecology, Evolution and Systematics 36, 541–562.CrossRefGoogle Scholar
Philippe, H. & Telford, M. J. 2006. Large-scale sequencing and the new animal phylogeny. Trends in Ecology & Evolution 21, 614–620.CrossRefGoogle ScholarPubMed
Rentzsch, F., Anton, R., Saina, M.et al. 2006. Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: Implications for the evolution of axial patterning. Developmental Biology 296, 375–387.CrossRefGoogle ScholarPubMed
Ruiz-Trillo, I., Paps, J., Loukota, M.et al. 2002. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceedings of the National Academy of Sciences of the USA 99, 11246–11251.CrossRefGoogle ScholarPubMed
Ruiz-Trillo, I., Riutort, M., Fourcade, H. M., Baguñà, J. & Boore, J. L. 2004. Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Molecular Phylogenetics & Evolution 33, 321–332.CrossRefGoogle ScholarPubMed
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A. & Baguñà, J. 1999. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283, 1919–1923.CrossRefGoogle Scholar
Salvini-Plawen, L. V. 1978. On the origin and evolution of the lower Metazoa. Zeitschrift für Zoologische Systematik und Evolutionsforschung 16, 40–88.CrossRefGoogle Scholar
Sedgwick, W. 1884. On the origin of metameric segmentation and some other morphological questions. Quarterly Journal of the Microscopical Society 24, 43–82.Google Scholar
Sempere, L., Cole, C. N., McPeek, M. A. & Peterson, K. J. 2006. The phylogenetic distribution of Metazoan microRNAs: insights into evolutionary complexity and constraint. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 306, 575–588.CrossRefGoogle ScholarPubMed
Sly, B. J., Snoke, M. S. & Raff, R. R. 2003. Who came first – larvae or adults? Origins of bilaterian metazoan larvae. International Journal of Developmental Biology 47, 623–632.Google ScholarPubMed
Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. 2005. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1–14.CrossRefGoogle ScholarPubMed
Stephenson, T. A. 1926. British Sea Anemones. London: The Ray Society.Google Scholar
Technau, U. 2001. Brachyury, the blastopore and the evolution of the mesoderm. BioEssays 23, 788–794.CrossRefGoogle ScholarPubMed
Telford, M. J., Lockyer, A. E., Cartwright-Finch, C. & Littlewood, D. T. J. 2003. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proceedings of the Royal Society of London B 270, 1077–1083.CrossRefGoogle ScholarPubMed
Valentine, J. W. 2004. On the Origin of Phyla. Chicago: University of Chicago Press.Google Scholar
Valentine, J. W. 2006. Ancestors and urbilateria. Evolution & Development 8, 391–393.CrossRefGoogle ScholarPubMed
Biggelaar, J. A. M. & Dictus, W. J. A. G.. 2005. Gastrulation in the molluscan embryo. In Stern, C. (ed.) Gastrulation, Cold Spring Harbor Laboratory Press. pp. 63–77.Google Scholar
Wienholds, E. & Plasterk, R. H. A. 2005. MicroRNA function in animal development. FEBS Letters 579, 5911–5922.CrossRefGoogle ScholarPubMed
Willmer, P. 1990. Invertebrate Relationships: Patterns in Animal Evolution. Cambridge University Press: Cambridge.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×